tools: add helpful vector and read operations
After importing the I/O ops trait via: use crate::tools::io::ops::*; Instead of: let mut buffer = vec![0u8; 65536]; file.read_exact(&mut buffer)?; use: let buffer = file.read_exact_allocated(65536)?; After importing the vector helpers via: use crate::tools::vec::{self, ops::*}; For a buffer which *could* be uninitialized but you prefer zero-initialization anyway for security reasons, instead of: let mut buffer = vec![0u8; len]; use: let mut buffer = vec::undefined(len); which zero-initializes, but, if the `valgrind` feature flag is enabled, marks the vector as having undefined contents, so reading from it will cause valgrind errors. Signed-off-by: Wolfgang Bumiller <w.bumiller@proxmox.com>
This commit is contained in:
parent
8bea85b42e
commit
9cdda3f7c7
@ -47,6 +47,11 @@ pam = "0.7"
|
||||
zstd = "0.4"
|
||||
xdg = "2.2"
|
||||
mio = "0.6"
|
||||
valgrind_request = { version = "1.1", optional = true }
|
||||
|
||||
[features]
|
||||
default = []
|
||||
valgrind = ["valgrind_request"]
|
||||
|
||||
[replace]
|
||||
"zstd-sys:1.4.8" = { path = "zstd-sys" }
|
||||
|
@ -37,6 +37,8 @@ pub mod read;
|
||||
pub mod write;
|
||||
pub mod acl;
|
||||
pub mod xattr;
|
||||
pub mod vec;
|
||||
pub mod io;
|
||||
|
||||
mod process_locker;
|
||||
pub use process_locker::*;
|
||||
|
303
src/tools/io.rs
Normal file
303
src/tools/io.rs
Normal file
@ -0,0 +1,303 @@
|
||||
//! Module providing I/O helpers (sync and async).
|
||||
//!
|
||||
//! The [`ops`](io::ops) module provides helper traits for types implementing [`Read`](std::io::Read).
|
||||
//!
|
||||
//! The top level functions in of this module here are used for standalone implementations of
|
||||
//! various functionality which is actually intended to be available as methods to types
|
||||
//! implementing `AsyncRead`, which, however, without async/await cannot be methods due to them
|
||||
//! having non-static lifetimes in that case.
|
||||
//!
|
||||
//! ```
|
||||
//! use std::io;
|
||||
//!
|
||||
//! use crate::tools::io::read_exact_allocated;
|
||||
//! use crate::tools::vec::{self, ops::*};
|
||||
//!
|
||||
//! // Currently usable:
|
||||
//! fn do_something() -> impl Future<Item = Vec<u8>, Error = io::Error> {
|
||||
//! tokio::fs::File::open("some.file")
|
||||
//! .and_then(|file| read_exact_allocated(file, unsafe { vec::uninitialized(1024) }))
|
||||
//! .and_then(|(file, mut buffer)| {
|
||||
//! so_something_with(&buffer);
|
||||
//! // append more data:
|
||||
//! tokio::io::read_exact(file, unsafe { buffer.grow_uninitialized(1024) })
|
||||
//! })
|
||||
//! .and_then(|(_file, bigger_buffer)| {
|
||||
//! use_the(bigger_buffer);
|
||||
//! Ok(bigger_buffer)
|
||||
//! });
|
||||
//! }
|
||||
//!
|
||||
//! // Future async/await variant:
|
||||
//! async fn do_something() -> Vec<u8> {
|
||||
//! let mut file = tokio::fs::File::open("some.file").await?;
|
||||
//! let mut buffer = file.read_exact_allocated(1024).await?;
|
||||
//! do_something_with(buffer);
|
||||
//! file.append_to_vec(&mut buffer, 1024).await?;
|
||||
//! buffer
|
||||
//! }
|
||||
//! ```
|
||||
|
||||
use std::io;
|
||||
|
||||
use futures::Future;
|
||||
use futures::{Async, Poll};
|
||||
use tokio::io::AsyncRead;
|
||||
|
||||
use crate::tools::vec::{self, ops::*};
|
||||
|
||||
pub mod ops;
|
||||
|
||||
/// Create a future which reads an exact amount of bytes from an input.
|
||||
///
|
||||
/// The future's output is a tuple containing the input and a newly allocated `Vec<u8>` containing
|
||||
/// the data.
|
||||
///
|
||||
/// Example:
|
||||
/// ```
|
||||
/// tokio::fs::File::open("some.file")
|
||||
/// .and_then(|file| read_exact_allocated(file, 1024))
|
||||
/// .and_then(|(_file, data)| {
|
||||
/// use_the(data);
|
||||
/// })
|
||||
/// ```
|
||||
pub fn read_exact_allocated<R: AsyncRead>(reader: R, size: usize) -> ReadExactAllocated<R> {
|
||||
ReadExactAllocated(Some(reader), None, size)
|
||||
}
|
||||
|
||||
/// A future returned by [`read_exact_allocated`].
|
||||
pub struct ReadExactAllocated<R: AsyncRead>(Option<R>, Option<Vec<u8>>, usize);
|
||||
|
||||
impl<R: AsyncRead> Future for ReadExactAllocated<R> {
|
||||
type Item = (R, Vec<u8>);
|
||||
type Error = io::Error;
|
||||
|
||||
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
|
||||
assert!(self.0.is_some(), "polled after ready");
|
||||
|
||||
// allocation happens on first poll:
|
||||
if self.1.is_none() {
|
||||
self.1 = Some(unsafe { vec::uninitialized(self.2) });
|
||||
// now self.2 is the position:
|
||||
self.2 = 0;
|
||||
}
|
||||
|
||||
let mut buffer = self.1.take().unwrap();
|
||||
|
||||
loop {
|
||||
match self.0.as_mut().unwrap().poll_read(&mut buffer[self.2..]) {
|
||||
Ok(Async::Ready(0)) => {
|
||||
self.0 = None;
|
||||
return Err(io::Error::from(io::ErrorKind::UnexpectedEof));
|
||||
}
|
||||
Ok(Async::Ready(some)) => {
|
||||
self.2 += some;
|
||||
if self.2 == buffer.len() {
|
||||
self.0 = None;
|
||||
return Ok(Async::Ready((self.0.take().unwrap(), buffer)));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
Ok(Async::NotReady) => {
|
||||
self.1 = Some(buffer);
|
||||
return Ok(Async::NotReady);
|
||||
}
|
||||
Err(err) => {
|
||||
self.0 = None;
|
||||
return Err(err);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a future which appends up to at most `size` bytes to a vector, growing it as needed.
|
||||
///
|
||||
/// This will grow the vector as if a single `.reserve(amount_to_read)` call was made and fill it
|
||||
/// with as much data as a single read call will provide.
|
||||
///
|
||||
/// The future's output is a tuple containing the input, the vector and the number of bytes
|
||||
/// actually read.
|
||||
///
|
||||
/// Example:
|
||||
/// ```
|
||||
/// tokio::fs::File::open("some.file")
|
||||
/// .and_then(|file| append_to_vec(file, Vec::new(), 1024))
|
||||
/// .and_then(|(_file, data, size)| {
|
||||
/// assert!(data.len() == size);
|
||||
/// println!("Actually got {} bytes of data.", size);
|
||||
/// use_the(data);
|
||||
/// })
|
||||
/// ```
|
||||
pub fn append_to_vec<R, V>(reader: R, mut vector: V, size: usize) -> AppendToVec<R, V>
|
||||
where
|
||||
R: AsyncRead,
|
||||
V: AsMut<Vec<u8>>,
|
||||
{
|
||||
let pos = vector.as_mut().len();
|
||||
unsafe {
|
||||
vector.as_mut().grow_uninitialized(size);
|
||||
}
|
||||
AppendToVec(Some(reader), Some(vector), pos)
|
||||
}
|
||||
|
||||
pub struct AppendToVec<R, V>(Option<R>, Option<V>, usize)
|
||||
where
|
||||
R: AsyncRead,
|
||||
V: AsMut<Vec<u8>>;
|
||||
|
||||
impl<R, V> Future for AppendToVec<R, V>
|
||||
where
|
||||
R: AsyncRead,
|
||||
V: AsMut<Vec<u8>>,
|
||||
{
|
||||
type Item = (R, V, usize);
|
||||
type Error = io::Error;
|
||||
|
||||
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
|
||||
assert!(self.0.is_some() && self.1.is_some(), "polled after ready");
|
||||
|
||||
let mut output = self.1.take().unwrap();
|
||||
match self.0.as_mut().unwrap().poll_read(&mut output.as_mut()[self.2..]) {
|
||||
Ok(Async::Ready(some)) => {
|
||||
unsafe {
|
||||
output.as_mut().set_len(self.2 + some);
|
||||
}
|
||||
return Ok(Async::Ready((self.0.take().unwrap(), output, some)));
|
||||
}
|
||||
Ok(Async::NotReady) => {
|
||||
self.1 = Some(output);
|
||||
return Ok(Async::NotReady);
|
||||
}
|
||||
Err(err) => {
|
||||
self.0 = None;
|
||||
return Err(err);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a future which appends an exact amount of bytes to a vector, growing it as needed.
|
||||
///
|
||||
/// This will grow the vector as if a single `.reserve(amount_to_read)` call was made and fill it
|
||||
/// as much data as requested. If not enough data is available, this produces an
|
||||
/// [`io::Error`](std::io::Error) of kind
|
||||
/// [`ErrorKind::UnexpectedEof`](std::io::ErrorKind::UnexpectedEof).
|
||||
///
|
||||
/// The future's output is a tuple containing the input and the vector.
|
||||
///
|
||||
/// Example:
|
||||
/// ```
|
||||
/// tokio::fs::File::open("some.file")
|
||||
/// .and_then(|file| append_exact_to_vec(file, Vec::new(), 1024))
|
||||
/// .and_then(|(_file, data)| {
|
||||
/// assert!(data.len() == size);
|
||||
/// println!("Actually got {} bytes of data.", size);
|
||||
/// use_the(data);
|
||||
/// })
|
||||
/// ```
|
||||
pub fn append_exact_to_vec<R, V>(reader: R, mut vector: V, size: usize) -> AppendExactToVec<R, V>
|
||||
where
|
||||
R: AsyncRead,
|
||||
V: AsMut<Vec<u8>>,
|
||||
{
|
||||
let pos = vector.as_mut().len();
|
||||
unsafe {
|
||||
vector.as_mut().grow_uninitialized(size);
|
||||
}
|
||||
AppendExactToVec(Some(reader), Some(vector), pos)
|
||||
}
|
||||
|
||||
pub struct AppendExactToVec<R, V>(Option<R>, Option<V>, usize)
|
||||
where
|
||||
R: AsyncRead,
|
||||
V: AsMut<Vec<u8>>;
|
||||
|
||||
impl<R, V> Future for AppendExactToVec<R, V>
|
||||
where
|
||||
R: AsyncRead,
|
||||
V: AsMut<Vec<u8>>,
|
||||
{
|
||||
type Item = (R, V);
|
||||
type Error = io::Error;
|
||||
|
||||
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
|
||||
assert!(self.0.is_some() && self.1.is_some(), "polled after ready");
|
||||
|
||||
let mut output = self.1.take().unwrap();
|
||||
loop {
|
||||
match self.0.as_mut().unwrap().poll_read(&mut output.as_mut()[self.2..]) {
|
||||
Ok(Async::Ready(0)) => {
|
||||
self.0 = None;
|
||||
return Err(io::Error::from(io::ErrorKind::UnexpectedEof));
|
||||
}
|
||||
Ok(Async::Ready(some)) => {
|
||||
self.2 += some;
|
||||
if self.2 == output.as_mut().len() {
|
||||
self.0 = None;
|
||||
return Ok(Async::Ready((self.0.take().unwrap(), output)));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
Ok(Async::NotReady) => {
|
||||
self.1 = Some(output);
|
||||
return Ok(Async::NotReady);
|
||||
}
|
||||
Err(err) => {
|
||||
self.0 = None;
|
||||
return Err(err);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* TODO: A trait such as the one below is only useful inside `async fn`, so this partwill have to
|
||||
* wait...
|
||||
*
|
||||
* When we have async/await we can finish this and move it into io/async_read.rs
|
||||
|
||||
/// Some additional related functionality for types implementing `AsyncRead`. Note that most of
|
||||
/// these methods map to functions from the [`io`](super::io) module, which are standalone
|
||||
/// variants.
|
||||
///
|
||||
/// This trait only works with standard futures or as part of `poll_fn` bodies, due to it requiring
|
||||
/// non-static lifetimes on futures.
|
||||
pub trait AsyncReadExtOps: AsyncRead + Sized {
|
||||
/// Read data into a newly allocated vector. This is a shortcut for:
|
||||
/// ```
|
||||
/// let mut data = Vec::with_capacity(len);
|
||||
/// unsafe {
|
||||
/// data.set_len(len);
|
||||
/// }
|
||||
/// reader.read_exact(&mut data)
|
||||
/// ```
|
||||
///
|
||||
/// With this trait, we just use:
|
||||
/// ```
|
||||
/// use crate::tools::vec::ops::*;
|
||||
///
|
||||
/// let data = reader.read_exact_allocated(len).await?;
|
||||
/// ```
|
||||
fn read_exact_allocated(&mut self, size: usize) -> ReadExactAllocated<&mut Self> {
|
||||
ReadExactAllocated(crate::tools::io::read_exact_allocated(self, size))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: AsyncRead + Sized> AsyncReadExtOps for T {
|
||||
}
|
||||
|
||||
pub struct ReadExactAllocated<R: AsyncRead>(crate::tools::io::ReadExactAllocated<R>);
|
||||
|
||||
impl<R: AsyncRead> futures::Future for ReadExactAllocated<R> {
|
||||
type Item = Vec<u8>;
|
||||
type Error = io::Error;
|
||||
|
||||
fn poll(&mut self) -> futures::Poll<Self::Item, Self::Error> {
|
||||
let (_this, data) = futures::try_ready!(self.0.poll());
|
||||
Ok(futures::Async::Ready(data))
|
||||
}
|
||||
}
|
||||
*/
|
203
src/tools/io/ops.rs
Normal file
203
src/tools/io/ops.rs
Normal file
@ -0,0 +1,203 @@
|
||||
//! This module provides additional operations for handling byte buffers for types implementing
|
||||
//! [`Read`](std::io::Read).
|
||||
//!
|
||||
//! See the [`ReadExtOps`](ops::ReadExtOps) trait for examples.
|
||||
|
||||
use std::io;
|
||||
|
||||
use endian_trait::Endian;
|
||||
|
||||
use crate::tools::vec::{self, ops::*};
|
||||
|
||||
/// Adds some additional related functionality for types implementing [`Read`](std::io::Read).
|
||||
///
|
||||
/// Particularly for reading into a newly allocated buffer, appending to a `Vec<u8>` or reading
|
||||
/// values of a specific endianess (types implementing [`Endian`]).
|
||||
///
|
||||
/// Examples:
|
||||
/// ```
|
||||
/// use crate::tools::io::ops::*;
|
||||
///
|
||||
/// let mut file = std::fs::File::open("some.data")?;
|
||||
///
|
||||
/// // read some bytes into a newly allocated Vec<u8>:
|
||||
/// let mut data = file.read_exact_allocated(header.data_size as usize)?;
|
||||
///
|
||||
/// // appending data to a vector:
|
||||
/// let actually_appended = file.append_to_vec(&mut data, length)?; // .read() version
|
||||
/// file.append_exact_to_vec(&mut data, length)?; // .read_exact() version
|
||||
/// ```
|
||||
///
|
||||
/// Or for reading values of a defined representation and endianess:
|
||||
///
|
||||
/// ```
|
||||
/// #[derive(Endian)]
|
||||
/// #[repr(C)]
|
||||
/// struct Header {
|
||||
/// version: u16,
|
||||
/// data_size: u16,
|
||||
/// }
|
||||
///
|
||||
/// // We have given `Header` a proper binary representation via `#[repr]`, so this is safe:
|
||||
/// let header: Header = unsafe { file.read_le_value()? };
|
||||
/// let mut blob = file.read_exact_allocated(header.data_size as usize)?;
|
||||
/// ```
|
||||
///
|
||||
/// [`Endian`]: https://docs.rs/endian_trait/0.6/endian_trait/trait.Endian.html
|
||||
pub trait ReadExtOps {
|
||||
/// Read data into a newly allocated vector. This is a shortcut for:
|
||||
/// ```
|
||||
/// let mut data = Vec::with_capacity(len);
|
||||
/// unsafe {
|
||||
/// data.set_len(len);
|
||||
/// }
|
||||
/// reader.read_exact(&mut data)?;
|
||||
/// ```
|
||||
///
|
||||
/// With this trait, we just use:
|
||||
/// ```
|
||||
/// use crate::tools::vec::ops::*;
|
||||
///
|
||||
/// let data = reader.read_exact_allocated(len);
|
||||
/// ```
|
||||
fn read_exact_allocated(&mut self, size: usize) -> io::Result<Vec<u8>>;
|
||||
|
||||
/// Append data to a vector, growing it as necessary. Returns the amount of data appended.
|
||||
fn append_to_vec(&mut self, out: &mut Vec<u8>, size: usize) -> io::Result<usize>;
|
||||
|
||||
/// Append an exact amount of data to a vector, growing it as necessary.
|
||||
fn append_exact_to_vec(&mut self, out: &mut Vec<u8>, size: usize) -> io::Result<()>;
|
||||
|
||||
/// Read a value with host endianess.
|
||||
///
|
||||
/// This is limited to types implementing the [`Endian`] trait under the assumption that
|
||||
/// this is only done for types which are supposed to be read/writable directly.
|
||||
///
|
||||
/// There's no way to directly depend on a type having a specific `#[repr(...)]`, therefore
|
||||
/// this is considered unsafe.
|
||||
///
|
||||
/// ```
|
||||
/// use crate::tools::vec::ops::*;
|
||||
///
|
||||
/// #[derive(Endian)]
|
||||
/// #[repr(C, packed)]
|
||||
/// struct Data {
|
||||
/// value: u16,
|
||||
/// count: u32,
|
||||
/// }
|
||||
///
|
||||
/// let mut file = std::fs::File::open("my-raw.dat")?;
|
||||
/// // We know `Data` has a safe binary representation (#[repr(C, packed)]), so we can
|
||||
/// // safely use our helper:
|
||||
/// let data: Data = unsafe { file.read_host_value()? };
|
||||
/// ```
|
||||
///
|
||||
/// [`Endian`]: https://docs.rs/endian_trait/0.6/endian_trait/trait.Endian.html
|
||||
unsafe fn read_host_value<T: Endian>(&mut self) -> io::Result<T>;
|
||||
|
||||
/// Read a little endian value.
|
||||
///
|
||||
/// The return type is required to implement the [`Endian`] trait, and we make the
|
||||
/// assumption that this is only done for types which are supposed to be read/writable
|
||||
/// directly.
|
||||
///
|
||||
/// There's no way to directly depend on a type having a specific `#[repr(...)]`, therefore
|
||||
/// this is considered unsafe.
|
||||
///
|
||||
/// ```
|
||||
/// use crate::tools::vec::ops::*;
|
||||
///
|
||||
/// #[derive(Endian)]
|
||||
/// #[repr(C, packed)]
|
||||
/// struct Data {
|
||||
/// value: u16,
|
||||
/// count: u32,
|
||||
/// }
|
||||
///
|
||||
/// let mut file = std::fs::File::open("my-little-endian.dat")?;
|
||||
/// // We know `Data` has a safe binary representation (#[repr(C, packed)]), so we can
|
||||
/// // safely use our helper:
|
||||
/// let data: Data = unsafe { file.read_le_value()? };
|
||||
/// ```
|
||||
///
|
||||
/// [`Endian`]: https://docs.rs/endian_trait/0.6/endian_trait/trait.Endian.html
|
||||
unsafe fn read_le_value<T: Endian>(&mut self) -> io::Result<T>;
|
||||
|
||||
/// Read a big endian value.
|
||||
///
|
||||
/// The return type is required to implement the [`Endian`] trait, and we make the
|
||||
/// assumption that this is only done for types which are supposed to be read/writable
|
||||
/// directly.
|
||||
///
|
||||
/// There's no way to directly depend on a type having a specific `#[repr(...)]`, therefore
|
||||
/// this is considered unsafe.
|
||||
///
|
||||
/// ```
|
||||
/// use crate::tools::vec::ops::*;
|
||||
///
|
||||
/// #[derive(Endian)]
|
||||
/// #[repr(C, packed)]
|
||||
/// struct Data {
|
||||
/// value: u16,
|
||||
/// count: u32,
|
||||
/// }
|
||||
///
|
||||
/// let mut file = std::fs::File::open("my-big-endian.dat")?;
|
||||
/// // We know `Data` has a safe binary representation (#[repr(C, packed)]), so we can
|
||||
/// // safely use our helper:
|
||||
/// let data: Data = unsafe { file.read_be_value()? };
|
||||
/// ```
|
||||
///
|
||||
/// [`Endian`]: https://docs.rs/endian_trait/0.6/endian_trait/trait.Endian.html
|
||||
unsafe fn read_be_value<T: Endian>(&mut self) -> io::Result<T>;
|
||||
}
|
||||
|
||||
impl<R: io::Read> ReadExtOps for R {
|
||||
fn read_exact_allocated(&mut self, size: usize) -> io::Result<Vec<u8>> {
|
||||
let mut out = unsafe { vec::uninitialized(size) };
|
||||
self.read_exact(&mut out)?;
|
||||
Ok(out)
|
||||
}
|
||||
|
||||
fn append_to_vec(&mut self, out: &mut Vec<u8>, size: usize) -> io::Result<usize> {
|
||||
let pos = out.len();
|
||||
unsafe {
|
||||
out.grow_uninitialized(size);
|
||||
}
|
||||
let got = self.read(&mut out[pos..])?;
|
||||
unsafe {
|
||||
out.set_len(pos + got);
|
||||
}
|
||||
Ok(got)
|
||||
}
|
||||
|
||||
fn append_exact_to_vec(&mut self, out: &mut Vec<u8>, size: usize) -> io::Result<()> {
|
||||
let pos = out.len();
|
||||
unsafe {
|
||||
out.grow_uninitialized(size);
|
||||
}
|
||||
self.read_exact(&mut out[pos..])?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
unsafe fn read_host_value<T: Endian>(&mut self) -> io::Result<T> {
|
||||
let mut value: T = std::mem::uninitialized();
|
||||
self.read_exact(std::slice::from_raw_parts_mut(
|
||||
&mut value as *mut T as *mut u8,
|
||||
std::mem::size_of::<T>(),
|
||||
))?;
|
||||
Ok(value)
|
||||
}
|
||||
|
||||
unsafe fn read_le_value<T: Endian>(&mut self) -> io::Result<T> {
|
||||
Ok(self.read_host_value::<T>()?.
|
||||
from_le()
|
||||
)
|
||||
}
|
||||
|
||||
unsafe fn read_be_value<T: Endian>(&mut self) -> io::Result<T> {
|
||||
Ok(self.read_host_value::<T>()?
|
||||
.from_be()
|
||||
)
|
||||
}
|
||||
}
|
118
src/tools/vec.rs
Normal file
118
src/tools/vec.rs
Normal file
@ -0,0 +1,118 @@
|
||||
//! Byte vector helpers.
|
||||
//!
|
||||
//! We have a lot of I/O code such as:
|
||||
//! ```
|
||||
//! let mut buffer = vec![0u8; header_size];
|
||||
//! file.read_exact(&mut buffer)?;
|
||||
//! ```
|
||||
//! (We even have this case with a 4M buffer!)
|
||||
//!
|
||||
//! This needlessly initializes the buffer to zero (which not only wastes time (an insane amount of
|
||||
//! time on debug builds, actually) but also prevents tools such as valgrind from pointing out
|
||||
//! access to actually uninitialized data, which may hide bugs...)
|
||||
//!
|
||||
//! This module provides some helpers for this kind of code. Many of these are supposed to stay on
|
||||
//! a lower level, with I/O helpers for types implementing [`Read`](std::io::Read) being available
|
||||
//! in the [`tools::io`](crate::tools::io) module.
|
||||
//!
|
||||
//! Examples:
|
||||
//! ```
|
||||
//! use crate::tools::vec::{self, ops::*};
|
||||
//!
|
||||
//! let mut buffer = vec::undefined(size); // A zero-initialized buffer with valgrind support
|
||||
//!
|
||||
//! let mut buffer = unsafe { vec::uninitialized(size) }; // an actually uninitialized buffer
|
||||
//! vec::clear(&mut buffer); // zero out an &mut [u8]
|
||||
//!
|
||||
//! vec::clear(unsafe {
|
||||
//! buffer.grow_unintialized(more); // grow the buffer with uninitialized bytes
|
||||
//! });
|
||||
//! ```
|
||||
|
||||
pub mod ops;
|
||||
|
||||
/// Create an uninitialized byte vector of a specific size.
|
||||
///
|
||||
/// This is just a shortcut for:
|
||||
/// ```
|
||||
/// let mut v = Vec::with_capacity(len);
|
||||
/// unsafe {
|
||||
/// v.set_len(len);
|
||||
/// }
|
||||
/// ```
|
||||
#[inline]
|
||||
pub unsafe fn uninitialized(len: usize) -> Vec<u8> {
|
||||
let mut out = Vec::with_capacity(len);
|
||||
out.set_len(len);
|
||||
out
|
||||
}
|
||||
|
||||
/// Shortcut to zero out a slice of bytes.
|
||||
#[inline]
|
||||
pub fn clear(data: &mut [u8]) {
|
||||
unsafe {
|
||||
std::ptr::write_bytes(data.as_mut_ptr(), 0, data.len());
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a newly allocated, zero initialized byte vector.
|
||||
#[inline]
|
||||
pub fn zeroed(len: usize) -> Vec<u8> {
|
||||
unsafe {
|
||||
let mut out = uninitialized(len);
|
||||
clear(&mut out);
|
||||
out
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a newly allocated byte vector of a specific size with "undefined" content.
|
||||
///
|
||||
/// The data will be zero initialized, but, if the `valgrind` feature is activated, it will be
|
||||
/// marked as uninitialized for debugging.
|
||||
#[inline]
|
||||
pub fn undefined(len: usize) -> Vec<u8> {
|
||||
undefined_impl(len)
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "valgrind"))]
|
||||
fn undefined_impl(len: usize) -> Vec<u8> {
|
||||
zeroed(len)
|
||||
}
|
||||
|
||||
#[cfg(feature = "valgrind")]
|
||||
fn undefined_impl(len: usize) -> Vec<u8> {
|
||||
let out = zeroed(len);
|
||||
vg::make_slice_undefined(&out[..]);
|
||||
out
|
||||
}
|
||||
|
||||
#[cfg(feature = "valgrind")]
|
||||
mod vg {
|
||||
type ValgrindValue = valgrind_request::Value;
|
||||
|
||||
/// Mark a memory region as undefined when using valgrind, causing it to treat read access to
|
||||
/// it as error.
|
||||
#[inline]
|
||||
pub(crate) fn make_mem_undefined(addr: *const u8, len: usize) -> ValgrindValue {
|
||||
const MAKE_MEM_UNDEFINED: ValgrindValue =
|
||||
(((b'M' as ValgrindValue) << 24) | ((b'C' as ValgrindValue) << 16)) + 1;
|
||||
unsafe {
|
||||
valgrind_request::do_client_request(
|
||||
0,
|
||||
&[
|
||||
MAKE_MEM_UNDEFINED,
|
||||
addr as usize as ValgrindValue,
|
||||
len as ValgrindValue,
|
||||
0, 0, 0,
|
||||
],
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Mark a slice of bytes as undefined when using valgrind, causing it to treat read access to
|
||||
/// it as error.
|
||||
#[inline]
|
||||
pub(crate) fn make_slice_undefined(data: &[u8]) -> ValgrindValue {
|
||||
make_mem_undefined(data.as_ptr(), data.len())
|
||||
}
|
||||
}
|
90
src/tools/vec/ops.rs
Normal file
90
src/tools/vec/ops.rs
Normal file
@ -0,0 +1,90 @@
|
||||
//! This module provides additional operations for `Vec<u8>`.
|
||||
//!
|
||||
//! Example:
|
||||
//! ```
|
||||
//! use crate::tools::vec::{self, ops::*};
|
||||
//!
|
||||
//! fn append_1024_to_vec<T: Read>(input: T, buffer: &mut Vec<u8>) -> std::io::Result<()> {
|
||||
//! input.read_exact(unsafe { buffer.grow_uninitialized(1024) })
|
||||
//! }
|
||||
//! ```
|
||||
|
||||
/// Some additional byte vector operations useful for I/O code.
|
||||
/// Example:
|
||||
/// ```
|
||||
/// use crate::tools::vec::{self, ops::*};
|
||||
///
|
||||
/// let mut data = file.read_exact_allocated(1024)?;
|
||||
/// do_something();
|
||||
/// file.read_exact(unsafe {
|
||||
/// data.grow_uninitialized(1024);
|
||||
/// })?;
|
||||
/// ```
|
||||
///
|
||||
/// Note that this module also provides a safe alternative for the case where
|
||||
/// `grow_uninitialized()` is directly followed by a `read_exact()` call via the [`ReadExtOps`]
|
||||
/// trait:
|
||||
/// ```
|
||||
/// file.append_to_vec(&mut data, 1024)?;
|
||||
/// ```
|
||||
///
|
||||
/// [`ReadExtOps`]: crate::tools::io::ops::ReadExtOps
|
||||
pub trait VecU8ExtOps {
|
||||
/// Grow a vector without initializing its elements. The difference to simply using `reserve`
|
||||
/// is that it also updates the actual length, making the newly allocated data part of the
|
||||
/// slice.
|
||||
///
|
||||
/// This is a shortcut for:
|
||||
/// ```
|
||||
/// vec.reserve(more);
|
||||
/// let total = vec.len() + more;
|
||||
/// unsafe {
|
||||
/// vec.set_len(total);
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// This returns a mutable slice to the newly allocated space, so it can be used inline:
|
||||
/// ```
|
||||
/// file.read_exact(unsafe { buffer.grow_uninitialized(1024) })?;
|
||||
/// ```
|
||||
///
|
||||
/// Although for the above case it is recommended to use the even shorter version from the
|
||||
/// [`ReadExtOps`] trait:
|
||||
/// ```
|
||||
/// // use crate::tools::vec::ops::ReadExtOps;
|
||||
/// file.append_to_vec(&mut buffer, 1024)?;
|
||||
/// ```
|
||||
///
|
||||
/// [`ReadExtOps`]: crate::tools::io::ops::ReadExtOps
|
||||
unsafe fn grow_uninitialized(&mut self, more: usize) -> &mut [u8];
|
||||
|
||||
/// Resize a vector to a specific size without initializing its data. This is a shortcut for:
|
||||
/// ```
|
||||
/// if new_size <= vec.len() {
|
||||
/// vec.truncate(new_size);
|
||||
/// } else {
|
||||
/// unsafe {
|
||||
/// vec.grow_uninitialized(new_size - vec.len());
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
unsafe fn resize_uninitialized(&mut self, total: usize);
|
||||
}
|
||||
|
||||
impl VecU8ExtOps for Vec<u8> {
|
||||
unsafe fn grow_uninitialized(&mut self, more: usize) -> &mut [u8] {
|
||||
let old_len = self.len();
|
||||
self.reserve(more);
|
||||
let total = old_len + more;
|
||||
self.set_len(total);
|
||||
&mut self[old_len..]
|
||||
}
|
||||
|
||||
unsafe fn resize_uninitialized(&mut self, new_size: usize) {
|
||||
if new_size <= self.len() {
|
||||
self.truncate(new_size);
|
||||
} else {
|
||||
self.grow_uninitialized(new_size - self.len());
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user