proxmox-backup/pbs-tools/src/crypt_config.rs

118 lines
3.7 KiB
Rust

//! Wrappers for OpenSSL crypto functions
//!
//! We use this to encrypt and decrypt data chunks. Cipher is
//! AES_256_GCM, which is fast and provides authenticated encryption.
//!
//! See the Wikipedia Artikel for [Authenticated
//! encryption](https://en.wikipedia.org/wiki/Authenticated_encryption)
//! for a short introduction.
use anyhow::Error;
use openssl::hash::MessageDigest;
use openssl::pkcs5::pbkdf2_hmac;
use openssl::symm::{Cipher, Crypter, Mode};
// openssl::sha::sha256(b"Proxmox Backup Encryption Key Fingerprint")
/// This constant is used to compute fingerprints.
const FINGERPRINT_INPUT: [u8; 32] = [
110, 208, 239, 119, 71, 31, 255, 77, 85, 199, 168, 254, 74, 157, 182, 33, 97, 64, 127, 19, 76,
114, 93, 223, 48, 153, 45, 37, 236, 69, 237, 38,
];
/// Encryption Configuration with secret key
///
/// This structure stores the secret key and provides helpers for
/// authenticated encryption.
pub struct CryptConfig {
// the Cipher
cipher: Cipher,
// A secrect key use to provide the chunk digest name space.
id_key: [u8; 32],
// Openssl hmac PKey of id_key
id_pkey: openssl::pkey::PKey<openssl::pkey::Private>,
// The private key used by the cipher.
enc_key: [u8; 32],
}
impl CryptConfig {
/// Create a new instance.
///
/// We compute a derived 32 byte key using pbkdf2_hmac. This second
/// key is used in compute_digest.
pub fn new(enc_key: [u8; 32]) -> Result<Self, Error> {
let mut id_key = [0u8; 32];
pbkdf2_hmac(
&enc_key,
b"_id_key",
10,
MessageDigest::sha256(),
&mut id_key,
)?;
let id_pkey = openssl::pkey::PKey::hmac(&id_key).unwrap();
Ok(Self {
id_key,
id_pkey,
enc_key,
cipher: Cipher::aes_256_gcm(),
})
}
/// Expose Cipher (AES_256_GCM)
pub fn cipher(&self) -> &Cipher {
&self.cipher
}
/// Expose encryption key
pub fn enc_key(&self) -> &[u8; 32] {
&self.enc_key
}
/// Compute a chunk digest using a secret name space.
///
/// Computes an SHA256 checksum over some secret data (derived
/// from the secret key) and the provided data. This ensures that
/// chunk digest values do not clash with values computed for
/// other sectret keys.
pub fn compute_digest(&self, data: &[u8]) -> [u8; 32] {
let mut hasher = openssl::sha::Sha256::new();
hasher.update(data);
hasher.update(&self.id_key); // at the end, to avoid length extensions attacks
hasher.finish()
}
/// Returns an openssl Signer using SHA256
pub fn data_signer(&self) -> openssl::sign::Signer {
openssl::sign::Signer::new(MessageDigest::sha256(), &self.id_pkey).unwrap()
}
/// Compute authentication tag (hmac/sha256)
///
/// Computes an SHA256 HMAC using some secret data (derived
/// from the secret key) and the provided data.
pub fn compute_auth_tag(&self, data: &[u8]) -> [u8; 32] {
let mut signer = self.data_signer();
signer.update(data).unwrap();
let mut tag = [0u8; 32];
signer.sign(&mut tag).unwrap();
tag
}
/// Computes a fingerprint for the secret key.
///
/// This computes a digest using the derived key (id_key) in order
/// to hinder brute force attacks.
pub fn fingerprint(&self) -> [u8; 32] {
self.compute_digest(&FINGERPRINT_INPUT)
}
/// Returns an openssl Crypter using AES_256_GCM,
pub fn data_crypter(&self, iv: &[u8; 16], mode: Mode) -> Result<Crypter, Error> {
let mut crypter = openssl::symm::Crypter::new(self.cipher, mode, &self.enc_key, Some(iv))?;
crypter.aad_update(b"")?; //??
Ok(crypter)
}
}