//! Helpers for daemons/services. use std::ffi::CString; use std::future::Future; use std::os::raw::{c_char, c_int}; use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd}; use std::os::unix::ffi::OsStrExt; use std::panic::UnwindSafe; use std::pin::Pin; use std::task::{Context, Poll}; use failure::*; use proxmox::tools::io::{ReadExt, WriteExt}; use crate::server; use crate::tools::{fd_change_cloexec, self}; // Unfortunately FnBox is nightly-only and Box is unusable, so just use Box... pub type BoxedStoreFunc = Box Result + UnwindSafe + Send>; /// Helper trait to "store" something in the environment to be re-used after re-executing the /// service on a reload. pub trait Reloadable: Sized { fn restore(var: &str) -> Result; fn get_store_func(&self) -> Result; } /// Manages things to be stored and reloaded upon reexec. /// Anything which should be restorable should be instantiated via this struct's `restore` method, #[derive(Default)] pub struct Reloader { pre_exec: Vec, } // Currently we only need environment variables for storage, but in theory we could also add // variants which need temporary files or pipes... struct PreExecEntry { name: &'static str, // Feel free to change to String if necessary... store_fn: BoxedStoreFunc, } impl Reloader { pub fn new() -> Self { Self { pre_exec: Vec::new(), } } /// Restore an object from an environment variable of the given name, or, if none exists, uses /// the function provided in the `or_create` parameter to instantiate the new "first" instance. /// /// Values created via this method will be remembered for later re-execution. pub async fn restore(&mut self, name: &'static str, or_create: F) -> Result where T: Reloadable, F: FnOnce() -> U, U: Future>, { let res = match std::env::var(name) { Ok(varstr) => T::restore(&varstr)?, Err(std::env::VarError::NotPresent) => or_create().await?, Err(_) => bail!("variable {} has invalid value", name), }; self.pre_exec.push(PreExecEntry { name, store_fn: res.get_store_func()?, }); Ok(res) } fn pre_exec(self) -> Result<(), Error> { for mut item in self.pre_exec { std::env::set_var(item.name, (item.store_fn)()?); } Ok(()) } pub fn fork_restart(self) -> Result<(), Error> { // Get the path to our executable as CString let exe = CString::new( std::fs::read_link("/proc/self/exe")? .into_os_string() .as_bytes() )?; // Get our parameters as Vec let args = std::env::args_os(); let mut new_args = Vec::with_capacity(args.len()); for arg in args { new_args.push(CString::new(arg.as_bytes())?); } // Synchronisation pipe: let (pin, pout) = super::pipe()?; // Start ourselves in the background: use nix::unistd::{fork, ForkResult}; match fork() { Ok(ForkResult::Child) => { // Double fork so systemd can supervise us without nagging... match fork() { Ok(ForkResult::Child) => { std::mem::drop(pin); // At this point we call pre-exec helpers. We must be certain that if they fail for // whatever reason we can still call `_exit()`, so use catch_unwind. match std::panic::catch_unwind(move || { let mut pout = unsafe { std::fs::File::from_raw_fd(pout.into_raw_fd()) }; let pid = nix::unistd::Pid::this(); if let Err(e) = unsafe { pout.write_host_value(pid.as_raw()) } { log::error!("failed to send new server PID to parent: {}", e); unsafe { libc::_exit(-1); } } std::mem::drop(pout); self.do_exec(exe, new_args) }) { Ok(_) => eprintln!("do_exec returned unexpectedly!"), Err(_) => eprintln!("panic in re-exec"), } } Ok(ForkResult::Parent { child }) => { std::mem::drop((pin, pout)); log::debug!("forked off a new server (second pid: {})", child); } Err(e) => log::error!("fork() failed, restart delayed: {}", e), } // No matter how we managed to get here, this is the time where we bail out quickly: unsafe { libc::_exit(-1) } } Ok(ForkResult::Parent { child }) => { log::debug!("forked off a new server (first pid: {}), waiting for 2nd pid", child); std::mem::drop(pout); let mut pin = unsafe { std::fs::File::from_raw_fd(pin.into_raw_fd()) }; let child = nix::unistd::Pid::from_raw(match unsafe { pin.read_le_value() } { Ok(v) => v, Err(e) => { log::error!("failed to receive pid of double-forked child process: {}", e); // systemd will complain but won't kill the service... return Ok(()); } }); if let Err(e) = systemd_notify(SystemdNotify::MainPid(child)) { log::error!("failed to notify systemd about the new main pid: {}", e); } Ok(()) } Err(e) => { log::error!("fork() failed, restart delayed: {}", e); Ok(()) } } } fn do_exec(self, exe: CString, args: Vec) -> Result<(), Error> { self.pre_exec()?; nix::unistd::setsid()?; let args: Vec<&std::ffi::CStr> = args.iter().map(|s| s.as_ref()).collect(); nix::unistd::execvp(&exe, &args)?; Ok(()) } } // For now all we need to do is store and reuse a tcp listening socket: impl Reloadable for tokio::net::TcpListener { // NOTE: The socket must not be closed when the store-function is called: // FIXME: We could become "independent" of the TcpListener and its reference to the file // descriptor by `dup()`ing it (and check if the listener still exists via kcmp()?) fn get_store_func(&self) -> Result { let mut fd_opt = Some(tools::Fd( nix::fcntl::fcntl(self.as_raw_fd(), nix::fcntl::FcntlArg::F_DUPFD_CLOEXEC(0))? )); Ok(Box::new(move || { let fd = fd_opt.take().unwrap(); fd_change_cloexec(fd.as_raw_fd(), false)?; Ok(fd.into_raw_fd().to_string()) })) } fn restore(var: &str) -> Result { let fd = var.parse::() .map_err(|e| format_err!("invalid file descriptor: {}", e))? as RawFd; fd_change_cloexec(fd, true)?; Ok(Self::from_std( unsafe { std::net::TcpListener::from_raw_fd(fd) }, )?) } } pub struct NotifyReady; impl Future for NotifyReady { type Output = Result<(), Error>; fn poll(self: Pin<&mut Self>, _cx: &mut Context) -> Poll> { systemd_notify(SystemdNotify::Ready)?; Poll::Ready(Ok(())) } } /// This creates a future representing a daemon which reloads itself when receiving a SIGHUP. /// If this is started regularly, a listening socket is created. In this case, the file descriptor /// number will be remembered in `PROXMOX_BACKUP_LISTEN_FD`. /// If the variable already exists, its contents will instead be used to restore the listening /// socket. The finished listening socket is then passed to the `create_service` function which /// can be used to setup the TLS and the HTTP daemon. pub async fn create_daemon( address: std::net::SocketAddr, create_service: F, ) -> Result<(), Error> where F: FnOnce(tokio::net::TcpListener, NotifyReady) -> Result, S: Future, { let mut reloader = Reloader::new(); let listener: tokio::net::TcpListener = reloader.restore( "PROXMOX_BACKUP_LISTEN_FD", move || async move { Ok(tokio::net::TcpListener::bind(&address).await?) }, ).await?; create_service(listener, NotifyReady)?.await; let mut reloader = Some(reloader); crate::tools::request_shutdown(); // make sure we are in shutdown mode if server::is_reload_request() { log::info!("daemon reload..."); if let Err(e) = systemd_notify(SystemdNotify::Reloading) { log::error!("failed to notify systemd about the state change: {}", e); } if let Err(e) = reloader.take().unwrap().fork_restart() { log::error!("error during reload: {}", e); let _ = systemd_notify(SystemdNotify::Status("error during reload".to_string())); } } else { log::info!("daemon shutting down..."); } Ok(()) } #[link(name = "systemd")] extern "C" { fn sd_notify(unset_environment: c_int, state: *const c_char) -> c_int; } pub enum SystemdNotify { Ready, Reloading, Stopping, Status(String), MainPid(nix::unistd::Pid), } pub fn systemd_notify(state: SystemdNotify) -> Result<(), Error> { let message = match state { SystemdNotify::Ready => CString::new("READY=1"), SystemdNotify::Reloading => CString::new("RELOADING=1"), SystemdNotify::Stopping => CString::new("STOPPING=1"), SystemdNotify::Status(msg) => CString::new(format!("STATUS={}", msg)), SystemdNotify::MainPid(pid) => CString::new(format!("MAINPID={}", pid)), }?; let rc = unsafe { sd_notify(0, message.as_ptr()) }; if rc < 0 { bail!( "systemd_notify failed: {}", std::io::Error::from_raw_os_error(-rc), ); } Ok(()) }