add statistics module

provides some basic statistics functions (sum, mean, etc.)
and a function to return the parameters of the linear regression of
two variables

implemented using num_traits to be more flexible for the types

Signed-off-by: Dominik Csapak <d.csapak@proxmox.com>
This commit is contained in:
Dominik Csapak 2020-06-09 10:01:12 +02:00 committed by Dietmar Maurer
parent 6cad8ce4ce
commit ba97479848
4 changed files with 126 additions and 0 deletions

View File

@ -30,6 +30,7 @@ lazy_static = "1.4"
libc = "0.2" libc = "0.2"
log = "0.4" log = "0.4"
nix = "0.16" nix = "0.16"
num-traits = "0.2"
once_cell = "1.3.1" once_cell = "1.3.1"
openssl = "0.10" openssl = "0.10"
pam = "0.7" pam = "0.7"

View File

@ -5,6 +5,7 @@ pub mod config;
pub mod node; pub mod node;
pub mod reader; pub mod reader;
mod subscription; mod subscription;
pub mod status;
pub mod types; pub mod types;
pub mod version; pub mod version;
pub mod pull; pub mod pull;

View File

@ -30,6 +30,7 @@ pub mod lru_cache;
pub mod runtime; pub mod runtime;
pub mod ticket; pub mod ticket;
pub mod timer; pub mod timer;
pub mod statistics;
pub mod systemd; pub mod systemd;
mod wrapped_reader_stream; mod wrapped_reader_stream;

123
src/tools/statistics.rs Normal file
View File

@ -0,0 +1,123 @@
//! Helpers for common statistics tasks
use num_traits::NumAssignRef;
use num_traits::cast::ToPrimitive;
/// Calculates the sum of a list of numbers
/// ```
/// # use proxmox_backup::tools::statistics::sum;
/// # use num_traits::cast::ToPrimitive;
///
/// assert_eq!(sum(&[0,1,2,3,4,5]), 15);
/// assert_eq!(sum(&[-1,1,-2,2]), 0);
/// assert!((sum(&[0.0, 0.1,0.2]).to_f64().unwrap() - 0.3).abs() < 0.001);
/// assert!((sum(&[0.0, -0.1,0.2]).to_f64().unwrap() - 0.1).abs() < 0.001);
/// ```
pub fn sum<T>(list: &[T]) -> T
where
T: NumAssignRef + ToPrimitive
{
let mut sum = T::zero();
for num in list {
sum += num;
}
sum
}
/// Calculates the mean of a variable x
/// ```
/// # use proxmox_backup::tools::statistics::mean;
///
/// assert!((mean(&[0,1,2,3,4,5]).unwrap() - 2.5).abs() < 0.001);
/// assert_eq!(mean::<u64>(&[]), None)
/// ```
pub fn mean<T>(list: &[T]) -> Option<f64>
where
T: NumAssignRef + ToPrimitive
{
let len = list.len();
if len == 0 {
return None
}
Some(sum(list).to_f64()?/(list.len() as f64))
}
/// Calculates the variance of a variable x
/// ```
/// # use proxmox_backup::tools::statistics::variance;
///
/// assert!((variance(&[1,2,3,4]).unwrap() - 1.25).abs() < 0.001);
/// assert_eq!(variance::<u64>(&[]), None)
/// ```
pub fn variance<T>(list: &[T]) -> Option<f64>
where
T: NumAssignRef + ToPrimitive
{
covariance(list, list)
}
/// Calculates the (non-corrected) covariance of two variables x,y
pub fn covariance<X, Y> (x: &[X], y: &[Y]) -> Option<f64>
where
X: NumAssignRef + ToPrimitive,
Y: NumAssignRef + ToPrimitive,
{
let len_x = x.len();
let len_y = y.len();
if len_x == 0 || len_y == 0 || len_x != len_y {
return None
}
let mean_x = mean(x)?;
let mean_y = mean(y)?;
let covariance = sum(&(0..len_x).map(|i| {
let x = x[i].to_f64().unwrap_or(0.0);
let y = y[i].to_f64().unwrap_or(0.0);
(x - mean_x)*(y - mean_y)
}).collect::<Vec<f64>>());
Some(covariance/(len_x as f64))
}
/// Returns the factors (a,b) of a linear regression y = a + bx
/// for the variables [x,y] or None if the lists are not the same length
/// ```
/// # use proxmox_backup::tools::statistics::linear_regression;
///
/// let x = &[0,1,2,3,4];
/// let y = &[-4,-2,0,2,4];
/// let (a,b) = linear_regression(x,y).unwrap();
/// assert!((a - -4.0).abs() < 0.001);
/// assert!((b - 2.0).abs() < 0.001);
/// ```
pub fn linear_regression<X, Y> (x: &[X], y: &[Y]) -> Option<(f64, f64)>
where
X: NumAssignRef + ToPrimitive,
Y: NumAssignRef + ToPrimitive
{
let len_x = x.len();
let len_y = y.len();
if len_x == 0 || len_y == 0 || len_x != len_y {
return None
}
let mean_x = mean(x)?;
let mean_y = mean(y)?;
let mut covariance = 0.0;
let mut variance = 0.0;
for i in 0..len_x {
let x = x[i].to_f64()?;
let y = y[i].to_f64()?;
let x_mean_x = x - mean_x;
covariance += x_mean_x*(y - mean_y);
variance += x_mean_x * x_mean_x;
}
let beta = covariance/variance;
let alpha = mean_y - beta*mean_x;
Some((alpha,beta))
}