move lru cachers to pbs-tools
Signed-off-by: Wolfgang Bumiller <w.bumiller@proxmox.com>
This commit is contained in:
@ -13,9 +13,9 @@ use tokio::io::{AsyncRead, AsyncSeek, ReadBuf};
|
||||
use proxmox::io_format_err;
|
||||
use proxmox::sys::error::io_err_other;
|
||||
|
||||
use pbs_datastore::index::IndexFile;
|
||||
use pbs_datastore::read_chunk::AsyncReadChunk;
|
||||
use super::IndexFile;
|
||||
use crate::tools::async_lru_cache::{AsyncCacher, AsyncLruCache};
|
||||
use pbs_tools::async_lru_cache::{AsyncCacher, AsyncLruCache};
|
||||
|
||||
struct AsyncChunkCacher<T> {
|
||||
reader: Arc<T>,
|
||||
|
@ -11,6 +11,7 @@ use pxar::accessor::{MaybeReady, ReadAt, ReadAtOperation};
|
||||
use pbs_datastore::dynamic_index::DynamicIndexReader;
|
||||
use pbs_datastore::read_chunk::ReadChunk;
|
||||
use pbs_datastore::index::IndexFile;
|
||||
use pbs_tools::lru_cache::LruCache;
|
||||
|
||||
struct CachedChunk {
|
||||
range: Range<u64>,
|
||||
@ -39,7 +40,7 @@ pub struct BufferedDynamicReader<S> {
|
||||
buffered_chunk_idx: usize,
|
||||
buffered_chunk_start: u64,
|
||||
read_offset: u64,
|
||||
lru_cache: crate::tools::lru_cache::LruCache<usize, CachedChunk>,
|
||||
lru_cache: LruCache<usize, CachedChunk>,
|
||||
}
|
||||
|
||||
struct ChunkCacher<'a, S> {
|
||||
@ -47,7 +48,7 @@ struct ChunkCacher<'a, S> {
|
||||
index: &'a DynamicIndexReader,
|
||||
}
|
||||
|
||||
impl<'a, S: ReadChunk> crate::tools::lru_cache::Cacher<usize, CachedChunk> for ChunkCacher<'a, S> {
|
||||
impl<'a, S: ReadChunk> pbs_tools::lru_cache::Cacher<usize, CachedChunk> for ChunkCacher<'a, S> {
|
||||
fn fetch(&mut self, index: usize) -> Result<Option<CachedChunk>, Error> {
|
||||
let info = match self.index.chunk_info(index) {
|
||||
Some(info) => info,
|
||||
@ -70,7 +71,7 @@ impl<S: ReadChunk> BufferedDynamicReader<S> {
|
||||
buffered_chunk_idx: 0,
|
||||
buffered_chunk_start: 0,
|
||||
read_offset: 0,
|
||||
lru_cache: crate::tools::lru_cache::LruCache::new(32),
|
||||
lru_cache: LruCache::new(32),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,136 +0,0 @@
|
||||
//! An 'async'-safe layer on the existing sync LruCache implementation. Supports multiple
|
||||
//! concurrent requests to the same key.
|
||||
|
||||
use anyhow::Error;
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::future::Future;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use super::lru_cache::LruCache;
|
||||
use super::BroadcastFuture;
|
||||
|
||||
/// Interface for asynchronously getting values on cache misses.
|
||||
pub trait AsyncCacher<K, V: Clone>: Sync + Send {
|
||||
/// Fetch a value for key on cache miss.
|
||||
///
|
||||
/// Works similar to non-async lru_cache::Cacher, but if the key has already been requested
|
||||
/// and the result is not cached yet, the 'fetch' function will not be called and instead the
|
||||
/// result of the original request cloned and returned upon completion.
|
||||
///
|
||||
/// The underlying LRU structure is not modified until the returned future resolves to an
|
||||
/// Ok(Some(_)) value.
|
||||
fn fetch(&self, key: K) -> Box<dyn Future<Output = Result<Option<V>, Error>> + Send>;
|
||||
}
|
||||
|
||||
/// See tools::lru_cache::LruCache, this implements an async-safe variant of that with the help of
|
||||
/// AsyncCacher.
|
||||
#[derive(Clone)]
|
||||
pub struct AsyncLruCache<K, V> {
|
||||
maps: Arc<Mutex<(LruCache<K, V>, HashMap<K, BroadcastFuture<Option<V>>>)>>,
|
||||
}
|
||||
|
||||
impl<K: std::cmp::Eq + std::hash::Hash + Copy, V: Clone + Send + 'static> AsyncLruCache<K, V> {
|
||||
/// Create a new AsyncLruCache with the given maximum capacity.
|
||||
pub fn new(capacity: usize) -> Self {
|
||||
Self {
|
||||
maps: Arc::new(Mutex::new((LruCache::new(capacity), HashMap::new()))),
|
||||
}
|
||||
}
|
||||
|
||||
/// Access an item either via the cache or by calling cacher.fetch. A return value of Ok(None)
|
||||
/// means the item requested has no representation, Err(_) means a call to fetch() failed,
|
||||
/// regardless of whether it was initiated by this call or a previous one.
|
||||
pub async fn access(&self, key: K, cacher: &dyn AsyncCacher<K, V>) -> Result<Option<V>, Error> {
|
||||
let (owner, result_fut) = {
|
||||
// check if already requested
|
||||
let mut maps = self.maps.lock().unwrap();
|
||||
if let Some(fut) = maps.1.get(&key) {
|
||||
// wait for the already scheduled future to resolve
|
||||
(false, fut.listen())
|
||||
} else {
|
||||
// check if value is cached in LRU
|
||||
if let Some(val) = maps.0.get_mut(key) {
|
||||
return Ok(Some(val.clone()));
|
||||
}
|
||||
|
||||
// if neither, start broadcast future and put into map while we still have lock
|
||||
let fut = cacher.fetch(key);
|
||||
let broadcast = BroadcastFuture::new(fut);
|
||||
let result_fut = broadcast.listen();
|
||||
maps.1.insert(key, broadcast);
|
||||
(true, result_fut)
|
||||
}
|
||||
// drop Mutex before awaiting any future
|
||||
};
|
||||
|
||||
let result = result_fut.await;
|
||||
|
||||
if owner {
|
||||
// this call was the one initiating the request, put into LRU and remove from map
|
||||
let mut maps = self.maps.lock().unwrap();
|
||||
if let Ok(Some(ref value)) = result {
|
||||
maps.0.insert(key, value.clone());
|
||||
}
|
||||
maps.1.remove(&key);
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
struct TestAsyncCacher {
|
||||
prefix: &'static str,
|
||||
}
|
||||
|
||||
impl AsyncCacher<i32, String> for TestAsyncCacher {
|
||||
fn fetch(
|
||||
&self,
|
||||
key: i32,
|
||||
) -> Box<dyn Future<Output = Result<Option<String>, Error>> + Send> {
|
||||
let x = self.prefix;
|
||||
Box::new(async move { Ok(Some(format!("{}{}", x, key))) })
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_async_lru_cache() {
|
||||
let rt = tokio::runtime::Runtime::new().unwrap();
|
||||
rt.block_on(async move {
|
||||
let cacher = TestAsyncCacher { prefix: "x" };
|
||||
let cache: AsyncLruCache<i32, String> = AsyncLruCache::new(2);
|
||||
|
||||
assert_eq!(
|
||||
cache.access(10, &cacher).await.unwrap(),
|
||||
Some("x10".to_string())
|
||||
);
|
||||
assert_eq!(
|
||||
cache.access(20, &cacher).await.unwrap(),
|
||||
Some("x20".to_string())
|
||||
);
|
||||
assert_eq!(
|
||||
cache.access(30, &cacher).await.unwrap(),
|
||||
Some("x30".to_string())
|
||||
);
|
||||
|
||||
for _ in 0..10 {
|
||||
let c = cache.clone();
|
||||
tokio::spawn(async move {
|
||||
let cacher = TestAsyncCacher { prefix: "y" };
|
||||
assert_eq!(
|
||||
c.access(40, &cacher).await.unwrap(),
|
||||
Some("y40".to_string())
|
||||
);
|
||||
});
|
||||
}
|
||||
|
||||
assert_eq!(
|
||||
cache.access(20, &cacher).await.unwrap(),
|
||||
Some("x20".to_string())
|
||||
);
|
||||
});
|
||||
}
|
||||
}
|
@ -1,394 +0,0 @@
|
||||
//! Least recently used (LRU) cache
|
||||
//!
|
||||
//! Implements a cache with least recently used cache replacement policy.
|
||||
//! A HashMap is used for fast access by a given key and a doubly linked list
|
||||
//! is used to keep track of the cache access order.
|
||||
|
||||
use std::collections::{HashMap, hash_map::Entry};
|
||||
use std::marker::PhantomData;
|
||||
|
||||
/// Interface for getting values on cache misses.
|
||||
pub trait Cacher<K, V> {
|
||||
/// Fetch a value for key on cache miss.
|
||||
///
|
||||
/// Whenever a cache miss occurs, the fetch method provides a corresponding value.
|
||||
/// If no value can be obtained for the given key, None is returned, the cache is
|
||||
/// not updated in that case.
|
||||
fn fetch(&mut self, key: K) -> Result<Option<V>, anyhow::Error>;
|
||||
}
|
||||
|
||||
/// Node of the doubly linked list storing key and value
|
||||
struct CacheNode<K, V> {
|
||||
// We need to additionally store the key to be able to remove it
|
||||
// from the HashMap when removing the tail.
|
||||
key: K,
|
||||
value: V,
|
||||
prev: *mut CacheNode<K, V>,
|
||||
next: *mut CacheNode<K, V>,
|
||||
// Dropcheck marker. See the phantom-data section in the rustonomicon.
|
||||
_marker: PhantomData<Box<CacheNode<K, V>>>,
|
||||
}
|
||||
|
||||
impl<K, V> CacheNode<K, V> {
|
||||
fn new(key: K, value: V) -> Self {
|
||||
Self {
|
||||
key,
|
||||
value,
|
||||
prev: std::ptr::null_mut(),
|
||||
next: std::ptr::null_mut(),
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// LRU cache instance.
|
||||
///
|
||||
/// # Examples:
|
||||
/// ```
|
||||
/// # use self::proxmox_backup::tools::lru_cache::{Cacher, LruCache};
|
||||
/// # fn main() -> Result<(), anyhow::Error> {
|
||||
/// struct LruCacher {};
|
||||
///
|
||||
/// impl Cacher<u64, u64> for LruCacher {
|
||||
/// fn fetch(&mut self, key: u64) -> Result<Option<u64>, anyhow::Error> {
|
||||
/// Ok(Some(key))
|
||||
/// }
|
||||
/// }
|
||||
///
|
||||
/// let mut cache = LruCache::new(3);
|
||||
///
|
||||
/// assert_eq!(cache.get_mut(1), None);
|
||||
/// assert_eq!(cache.len(), 0);
|
||||
///
|
||||
/// cache.insert(1, 1);
|
||||
/// cache.insert(2, 2);
|
||||
/// cache.insert(3, 3);
|
||||
/// cache.insert(4, 4);
|
||||
/// assert_eq!(cache.len(), 3);
|
||||
///
|
||||
/// assert_eq!(cache.get_mut(1), None);
|
||||
/// assert_eq!(cache.get_mut(2), Some(&mut 2));
|
||||
/// assert_eq!(cache.get_mut(3), Some(&mut 3));
|
||||
/// assert_eq!(cache.get_mut(4), Some(&mut 4));
|
||||
///
|
||||
/// cache.remove(4);
|
||||
/// cache.remove(3);
|
||||
/// cache.remove(2);
|
||||
/// assert_eq!(cache.len(), 0);
|
||||
/// assert_eq!(cache.get_mut(2), None);
|
||||
/// // access will fill in missing cache entry by fetching from LruCacher
|
||||
/// assert_eq!(cache.access(2, &mut LruCacher {}).unwrap(), Some(&mut 2));
|
||||
///
|
||||
/// cache.insert(1, 1);
|
||||
/// assert_eq!(cache.get_mut(1), Some(&mut 1));
|
||||
///
|
||||
/// cache.clear();
|
||||
/// assert_eq!(cache.len(), 0);
|
||||
/// assert_eq!(cache.get_mut(1), None);
|
||||
/// # Ok(())
|
||||
/// # }
|
||||
/// ```
|
||||
pub struct LruCache<K, V> {
|
||||
/// Quick access to individual nodes via the node pointer.
|
||||
map: HashMap<K, *mut CacheNode<K, V>>,
|
||||
/// Actual nodes stored in a linked list.
|
||||
list: LinkedList<K, V>,
|
||||
/// Max nodes the cache can hold, temporarily exceeded by 1 due to
|
||||
/// implementation details.
|
||||
capacity: usize,
|
||||
// Dropcheck marker. See the phantom-data section in the rustonomicon.
|
||||
_marker: PhantomData<Box<CacheNode<K, V>>>,
|
||||
}
|
||||
|
||||
// trivial: if our contents are Send, the whole cache is Send
|
||||
unsafe impl<K: Send, V: Send> Send for LruCache<K, V> {}
|
||||
|
||||
impl<K: std::cmp::Eq + std::hash::Hash + Copy, V> LruCache<K, V> {
|
||||
/// Create LRU cache instance which holds up to `capacity` nodes at once.
|
||||
pub fn new(capacity: usize) -> Self {
|
||||
let capacity = capacity.max(1);
|
||||
Self {
|
||||
map: HashMap::with_capacity(capacity),
|
||||
list: LinkedList::new(),
|
||||
capacity,
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// Clear all the entries from the cache.
|
||||
pub fn clear(&mut self) {
|
||||
// This frees only the HashMap with the node pointers.
|
||||
self.map.clear();
|
||||
// This frees the actual nodes and resets the list head and tail.
|
||||
self.list.clear();
|
||||
}
|
||||
|
||||
/// Insert or update an entry identified by `key` with the given `value`.
|
||||
/// This entry is placed as the most recently used node at the head.
|
||||
pub fn insert(&mut self, key: K, value: V) {
|
||||
match self.map.entry(key) {
|
||||
Entry::Occupied(mut o) => {
|
||||
// Node present, update value
|
||||
let node_ptr = *o.get_mut();
|
||||
self.list.bring_to_front(node_ptr);
|
||||
let mut node = unsafe { Box::from_raw(node_ptr) };
|
||||
node.value = value;
|
||||
let _node_ptr = Box::into_raw(node);
|
||||
}
|
||||
Entry::Vacant(v) => {
|
||||
// Node not present, insert a new one
|
||||
// Unfortunately we need a copy of the key here, therefore it has
|
||||
// to impl the copy trait
|
||||
let node = Box::new(CacheNode::new(key, value));
|
||||
let node_ptr = Box::into_raw(node);
|
||||
self.list.push_front(node_ptr);
|
||||
v.insert(node_ptr);
|
||||
// If we have more elements than capacity,
|
||||
// delete the lists tail node (= oldest node).
|
||||
// This needs to be executed after the insert in order to
|
||||
// avoid borrow conflict. This means there are temporarily
|
||||
// self.capacity + 1 cache nodes.
|
||||
if self.map.len() > self.capacity {
|
||||
self.pop_tail();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Remove the given `key` and its `value` from the cache.
|
||||
pub fn remove(&mut self, key: K) -> Option<V> {
|
||||
// Remove node pointer from the HashMap and get ownership of the node
|
||||
let node_ptr = self.map.remove(&key)?;
|
||||
let node = self.list.remove(node_ptr);
|
||||
Some(node.value)
|
||||
}
|
||||
|
||||
/// Remove the least recently used node from the cache.
|
||||
fn pop_tail(&mut self) {
|
||||
if let Some(old_tail) = self.list.pop_tail() {
|
||||
// Remove HashMap entry for old tail
|
||||
self.map.remove(&old_tail.key);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get a mutable reference to the value identified by `key`.
|
||||
/// This will update the cache entry to be the most recently used entry.
|
||||
/// On cache misses, None is returned.
|
||||
pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
|
||||
let node_ptr = self.map.get(&key)?;
|
||||
self.list.bring_to_front(*node_ptr);
|
||||
Some(unsafe { &mut (*self.list.head).value })
|
||||
}
|
||||
|
||||
/// Number of entries in the cache.
|
||||
pub fn len(&self) -> usize {
|
||||
self.map.len()
|
||||
}
|
||||
|
||||
/// Returns `true` when the cache is empty
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.map.is_empty()
|
||||
}
|
||||
|
||||
/// Get a mutable reference to the value identified by `key`.
|
||||
/// This will update the cache entry to be the most recently used entry.
|
||||
/// On cache misses, the cachers fetch method is called to get a corresponding
|
||||
/// value.
|
||||
/// If fetch returns a value, it is inserted as the most recently used entry
|
||||
/// in the cache.
|
||||
pub fn access<'a>(&'a mut self, key: K, cacher: &mut dyn Cacher<K, V>) -> Result<Option<&'a mut V>, anyhow::Error> {
|
||||
match self.map.entry(key) {
|
||||
Entry::Occupied(mut o) => {
|
||||
// Cache hit, birng node to front of list
|
||||
let node_ptr = *o.get_mut();
|
||||
self.list.bring_to_front(node_ptr);
|
||||
}
|
||||
Entry::Vacant(v) => {
|
||||
// Cache miss, try to fetch from cacher and insert at the front
|
||||
match cacher.fetch(key)? {
|
||||
None => return Ok(None),
|
||||
Some(value) => {
|
||||
// Unfortunately we need a copy of the key here, therefore it has
|
||||
// to impl the copy trait
|
||||
let node = Box::new(CacheNode::new(key, value));
|
||||
let node_ptr = Box::into_raw(node);
|
||||
self.list.push_front(node_ptr);
|
||||
v.insert(node_ptr);
|
||||
// If we have more elements than capacity,
|
||||
// delete the lists tail node (= oldest node).
|
||||
// This needs to be executed after the insert in order to
|
||||
// avoid borrow conflict. This means there are temporarily
|
||||
// self.capacity + 1 cache nodes.
|
||||
if self.map.len() > self.capacity {
|
||||
self.pop_tail();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(Some(unsafe { &mut (*self.list.head).value }))
|
||||
}
|
||||
}
|
||||
|
||||
/// Linked list holding the nodes of the LruCache.
|
||||
///
|
||||
/// This struct actually holds the CacheNodes via the raw linked list pointers
|
||||
/// and allows to define the access sequence of these via the list sequence.
|
||||
/// The LinkedList of the standard library unfortunately does not implement
|
||||
/// an efficient way to bring list entries to the front, therefore we need our own.
|
||||
struct LinkedList<K, V> {
|
||||
head: *mut CacheNode<K, V>,
|
||||
tail: *mut CacheNode<K, V>,
|
||||
}
|
||||
|
||||
impl<K, V> LinkedList<K, V> {
|
||||
/// Create a new empty linked list.
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
head: std::ptr::null_mut(),
|
||||
tail: std::ptr::null_mut(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Bring the CacheNode referenced by `node_ptr` to the front of the linked list.
|
||||
fn bring_to_front(&mut self, node_ptr: *mut CacheNode<K, V>) {
|
||||
if node_ptr == self.head {
|
||||
// node is already head, just return
|
||||
return;
|
||||
}
|
||||
|
||||
let mut node = unsafe { Box::from_raw(node_ptr) };
|
||||
// Update the prev node to point to next (or null if current node is tail)
|
||||
unsafe { (*node.prev).next = node.next };
|
||||
|
||||
// Update the next node or otherwise the tail
|
||||
if !node.next.is_null() {
|
||||
unsafe { (*node.next).prev = node.prev };
|
||||
} else {
|
||||
// No next node means this was the tail
|
||||
self.tail = node.prev;
|
||||
}
|
||||
|
||||
node.prev = std::ptr::null_mut();
|
||||
node.next = self.head;
|
||||
// update the head and release ownership of the node again
|
||||
let node_ptr = Box::into_raw(node);
|
||||
// Update current head
|
||||
unsafe { (*self.head).prev = node_ptr };
|
||||
// Update to new head
|
||||
self.head = node_ptr;
|
||||
}
|
||||
|
||||
/// Insert a new node at the front of the linked list.
|
||||
fn push_front(&mut self, node_ptr: *mut CacheNode<K, V>) {
|
||||
let mut node = unsafe { Box::from_raw(node_ptr) };
|
||||
|
||||
// Old head gets new heads next
|
||||
node.next = self.head;
|
||||
// Release ownership of node, rest can be handled with just the pointer.
|
||||
let node_ptr = Box::into_raw(node);
|
||||
|
||||
// Update the prev for the old head
|
||||
if !self.head.is_null() {
|
||||
unsafe { (*self.head).prev = node_ptr };
|
||||
}
|
||||
|
||||
// Update the head to the new node pointer
|
||||
self.head = node_ptr;
|
||||
|
||||
// If there was no old tail, this node will be the new tail too
|
||||
if self.tail.is_null() {
|
||||
self.tail = node_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
/// Remove the node referenced by `node_ptr` from the linked list and return it.
|
||||
fn remove(&mut self, node_ptr: *mut CacheNode<K, V>) -> Box<CacheNode<K, V>> {
|
||||
let node = unsafe { Box::from_raw(node_ptr) };
|
||||
|
||||
// Update the previous node or otherwise the head
|
||||
if !node.prev.is_null() {
|
||||
unsafe { (*node.prev).next = node.next };
|
||||
} else {
|
||||
// No previous node means this was the head
|
||||
self.head = node.next;
|
||||
}
|
||||
|
||||
// Update the next node or otherwise the tail
|
||||
if !node.next.is_null() {
|
||||
unsafe { (*node.next).prev = node.prev };
|
||||
} else {
|
||||
// No next node means this was the tail
|
||||
self.tail = node.prev;
|
||||
}
|
||||
node
|
||||
}
|
||||
|
||||
/// Remove the tail node from the linked list and return it.
|
||||
fn pop_tail(&mut self) -> Option<Box<CacheNode<K, V>>> {
|
||||
if self.tail.is_null() {
|
||||
return None;
|
||||
}
|
||||
|
||||
let old_tail = unsafe { Box::from_raw(self.tail) };
|
||||
self.tail = old_tail.prev;
|
||||
// Update next node for new tail
|
||||
if !self.tail.is_null() {
|
||||
unsafe { (*self.tail).next = std::ptr::null_mut() };
|
||||
}
|
||||
Some(old_tail)
|
||||
}
|
||||
|
||||
/// Clear the linked list and free all the nodes.
|
||||
fn clear(&mut self) {
|
||||
let mut next = self.head;
|
||||
while !next.is_null() {
|
||||
// Taking ownership of node and drop it at the end of the block.
|
||||
let current = unsafe { Box::from_raw(next) };
|
||||
next = current.next;
|
||||
}
|
||||
// Reset head and tail pointers
|
||||
self.head = std::ptr::null_mut();
|
||||
self.tail = std::ptr::null_mut();
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_linked_list() {
|
||||
let mut list = LinkedList::new();
|
||||
for idx in 0..3 {
|
||||
let node = Box::new(CacheNode::new(idx, idx + 1));
|
||||
// Get pointer, release ownership.
|
||||
let node_ptr = Box::into_raw(node);
|
||||
list.push_front(node_ptr);
|
||||
}
|
||||
assert_eq!(unsafe { (*list.head).key }, 2);
|
||||
assert_eq!(unsafe { (*list.head).value }, 3);
|
||||
assert_eq!(unsafe { (*list.tail).key }, 0);
|
||||
assert_eq!(unsafe { (*list.tail).value }, 1);
|
||||
|
||||
list.bring_to_front(list.tail);
|
||||
assert_eq!(unsafe { (*list.head).key }, 0);
|
||||
assert_eq!(unsafe { (*list.head).value }, 1);
|
||||
assert_eq!(unsafe { (*list.tail).key }, 1);
|
||||
assert_eq!(unsafe { (*list.tail).value }, 2);
|
||||
|
||||
list.bring_to_front(list.tail);
|
||||
assert_eq!(unsafe { (*list.head).key }, 1);
|
||||
assert_eq!(unsafe { (*list.head).value }, 2);
|
||||
assert_eq!(unsafe { (*list.tail).key }, 2);
|
||||
assert_eq!(unsafe { (*list.tail).value }, 3);
|
||||
|
||||
let tail = list.pop_tail().unwrap();
|
||||
assert_eq!(tail.key, 2);
|
||||
assert_eq!(tail.value, 3);
|
||||
assert_eq!(unsafe { (*list.head).key }, 1);
|
||||
assert_eq!(unsafe { (*list.head).value }, 2);
|
||||
assert_eq!(unsafe { (*list.tail).key }, 0);
|
||||
assert_eq!(unsafe { (*list.tail).value }, 1);
|
||||
|
||||
list.clear();
|
||||
assert!(list.head.is_null());
|
||||
assert!(list.tail.is_null());
|
||||
}
|
@ -38,8 +38,6 @@ pub use memcom::Memcom;
|
||||
|
||||
pub mod logrotate;
|
||||
pub mod loopdev;
|
||||
pub mod lru_cache;
|
||||
pub mod async_lru_cache;
|
||||
pub mod serde_filter;
|
||||
pub mod statistics;
|
||||
pub mod subscription;
|
||||
|
Reference in New Issue
Block a user