split tape code into new pbs_tape workspace

This commit is contained in:
Dietmar Maurer
2021-09-13 11:54:24 +02:00
parent bfd2b47649
commit 048b43af24
48 changed files with 672 additions and 698 deletions

25
pbs-tape/Cargo.toml Normal file
View File

@ -0,0 +1,25 @@
[package]
name = "pbs-tape"
version = "0.1.0"
authors = ["Proxmox Support Team <support@proxmox.com>"]
edition = "2018"
description = "LTO tage support"
[dependencies]
lazy_static = "1.4"
libc = "0.2"
anyhow = "1.0"
thiserror = "1.0"
endian_trait = { version = "0.6", features = ["arrays"] }
nix = "0.19.1"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
bitflags = "1.2.1"
regex = "1.2"
udev = ">= 0.3, <0.5"
proxmox = { version = "0.13.0", default-features = false, features = [] }
pbs-api-types = { path = "../pbs-api-types" }
pbs-tools = { path = "../pbs-tools" }
pbs-config = { path = "../pbs-config" }

897
pbs-tape/src/bin/pmt.rs Normal file
View File

@ -0,0 +1,897 @@
/// Control magnetic tape drive operation
///
/// This is a Rust implementation, using the Proxmox userspace tape
/// driver. This is meant as replacement fot the 'mt' command line
/// tool.
///
/// Features:
///
/// - written in Rust
/// - use Proxmox userspace driver (using SG_IO)
/// - optional json output format
/// - support tape alert flags
/// - support volume statistics
/// - read cartridge memory
use std::convert::TryInto;
use anyhow::{bail, Error};
use serde_json::Value;
use proxmox::{
api::{
api,
cli::*,
schema::{
Schema,
IntegerSchema,
StringSchema,
ArraySchema,
},
RpcEnvironment,
},
};
use pbs_api_types::{
LTO_DRIVE_PATH_SCHEMA, DRIVE_NAME_SCHEMA, LtoTapeDrive,
};
use pbs_config::drive::complete_drive_name;
use pbs_tape::{
sg_tape::SgTape,
linux_list_drives::{complete_drive_path, lto_tape_device_list, open_lto_tape_device},
};
pub const FILE_MARK_COUNT_SCHEMA: Schema =
IntegerSchema::new("File mark count.")
.minimum(1)
.maximum(i32::MAX as isize)
.schema();
pub const FILE_MARK_POSITION_SCHEMA: Schema =
IntegerSchema::new("File mark position (0 is BOT).")
.minimum(0)
.maximum(i32::MAX as isize)
.schema();
pub const RECORD_COUNT_SCHEMA: Schema =
IntegerSchema::new("Record count.")
.minimum(1)
.maximum(i32::MAX as isize)
.schema();
pub const DRIVE_OPTION_SCHEMA: Schema = StringSchema::new(
"Lto Tape Driver Option, either numeric value or option name.")
.schema();
pub const DRIVE_OPTION_LIST_SCHEMA: Schema =
ArraySchema::new("Drive Option List.", &DRIVE_OPTION_SCHEMA)
.min_length(1)
.schema();
fn get_tape_handle(param: &Value) -> Result<SgTape, Error> {
if let Some(name) = param["drive"].as_str() {
let (config, _digest) = pbs_config::drive::config()?;
let drive: LtoTapeDrive = config.lookup("lto", &name)?;
eprintln!("using device {}", drive.path);
return SgTape::new(open_lto_tape_device(&drive.path)?);
}
if let Some(device) = param["device"].as_str() {
eprintln!("using device {}", device);
return SgTape::new(open_lto_tape_device(&device)?);
}
if let Ok(name) = std::env::var("PROXMOX_TAPE_DRIVE") {
let (config, _digest) = pbs_config::drive::config()?;
let drive: LtoTapeDrive = config.lookup("lto", &name)?;
eprintln!("using device {}", drive.path);
return SgTape::new(open_lto_tape_device(&drive.path)?);
}
if let Ok(device) = std::env::var("TAPE") {
eprintln!("using device {}", device);
return SgTape::new(open_lto_tape_device(&device)?);
}
let (config, _digest) = pbs_config::drive::config()?;
let mut drive_names = Vec::new();
for (name, (section_type, _)) in config.sections.iter() {
if section_type != "lto" { continue; }
drive_names.push(name);
}
if drive_names.len() == 1 {
let name = drive_names[0];
let drive: LtoTapeDrive = config.lookup("lto", &name)?;
eprintln!("using device {}", drive.path);
return SgTape::new(open_lto_tape_device(&drive.path)?);
}
bail!("no drive/device specified");
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
count: {
schema: FILE_MARK_POSITION_SCHEMA,
},
},
},
)]
/// Position the tape at the beginning of the count file (after
/// filemark count)
fn asf(count: u64, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.locate_file(count)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
count: {
schema: FILE_MARK_COUNT_SCHEMA,
},
},
},
)]
/// Backward space count files (position before file mark).
///
/// The tape is positioned on the last block of the previous file.
fn bsf(count: usize, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.space_filemarks(-count.try_into()?)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
count: {
schema: FILE_MARK_COUNT_SCHEMA,
},
},
},
)]
/// Backward space count files, then forward space one record (position after file mark).
///
/// This leaves the tape positioned at the first block of the file
/// that is count - 1 files before the current file.
fn bsfm(count: usize, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.space_filemarks(-count.try_into()?)?;
handle.space_filemarks(1)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
count: {
schema: RECORD_COUNT_SCHEMA,
},
},
},
)]
/// Backward space records.
fn bsr(count: usize, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.space_blocks(-count.try_into()?)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
"output-format": {
schema: OUTPUT_FORMAT,
optional: true,
},
},
},
)]
/// Read Cartridge Memory
fn cartridge_memory(param: Value) -> Result<(), Error> {
let output_format = get_output_format(&param);
let mut handle = get_tape_handle(&param)?;
let result = handle.cartridge_memory();
if output_format == "json-pretty" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string_pretty(&result)?);
return Ok(());
}
if output_format == "json" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string(&result)?);
return Ok(());
}
if output_format != "text" {
bail!("unknown output format '{}'", output_format);
}
let list = result?;
for item in list {
println!("{}|{}|{}", item.id, item.name, item.value);
}
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
"output-format": {
schema: OUTPUT_FORMAT,
optional: true,
},
},
},
)]
/// Read Tape Alert Flags
fn tape_alert_flags(param: Value) -> Result<(), Error> {
let output_format = get_output_format(&param);
let mut handle = get_tape_handle(&param)?;
let result = handle.tape_alert_flags()
.map(|flags| format!("{:?}", flags));
if output_format == "json-pretty" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string_pretty(&result)?);
return Ok(());
}
if output_format == "json" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string(&result)?);
return Ok(());
}
if output_format != "text" {
bail!("unknown output format '{}'", output_format);
}
let flags = result?;
println!("Tape Alert Flags: {}", flags);
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
},
},
)]
/// Eject drive media
fn eject(param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.eject()?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
},
},
)]
/// Move to end of media
fn eod(param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.move_to_eom(false)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
fast: {
description: "Use fast erase.",
type: bool,
optional: true,
default: true,
},
},
},
)]
/// Erase media (from current position)
fn erase(fast: Option<bool>, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.erase_media(fast.unwrap_or(true))?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
fast: {
description: "Use fast erase.",
type: bool,
optional: true,
default: true,
},
},
},
)]
/// Format media, single partition
fn format(fast: Option<bool>, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.format_media(fast.unwrap_or(true))?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
count: {
schema: FILE_MARK_COUNT_SCHEMA,
},
},
},
)]
/// Forward space count files (position after file mark).
///
/// The tape is positioned on the first block of the next file.
fn fsf(count: usize, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.space_filemarks(count.try_into()?)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
count: {
schema: FILE_MARK_COUNT_SCHEMA,
},
},
},
)]
/// Forward space count files, then backward space one record (position before file mark).
///
/// This leaves the tape positioned at the last block of the file that
/// is count - 1 files past the current file.
fn fsfm(count: usize, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.space_filemarks(count.try_into()?)?;
handle.space_filemarks(-1)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
count: {
schema: RECORD_COUNT_SCHEMA,
},
},
},
)]
/// Forward space records.
fn fsr(count: usize, param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.space_blocks(count.try_into()?)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
},
},
)]
/// Load media
fn load(param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.load()?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
},
},
)]
/// Lock the tape drive door
fn lock(param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.set_medium_removal(false)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
},
},
)]
/// Rewind the tape
fn rewind(param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.rewind()?;
Ok(())
}
#[api(
input: {
properties: {
"output-format": {
schema: OUTPUT_FORMAT,
optional: true,
},
},
},
)]
/// Scan for existing tape changer devices
fn scan(param: Value) -> Result<(), Error> {
let output_format = get_output_format(&param);
let list = lto_tape_device_list();
if output_format == "json-pretty" {
println!("{}", serde_json::to_string_pretty(&list)?);
return Ok(());
}
if output_format == "json" {
println!("{}", serde_json::to_string(&list)?);
return Ok(());
}
if output_format != "text" {
bail!("unknown output format '{}'", output_format);
}
for item in list.iter() {
println!("{} ({}/{}/{})", item.path, item.vendor, item.model, item.serial);
}
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
"output-format": {
schema: OUTPUT_FORMAT,
optional: true,
},
},
},
)]
/// Drive Status
fn status(param: Value) -> Result<(), Error> {
let output_format = get_output_format(&param);
let mut handle = get_tape_handle(&param)?;
let result = handle.get_drive_and_media_status();
if output_format == "json-pretty" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string_pretty(&result)?);
return Ok(());
}
if output_format == "json" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string(&result)?);
return Ok(());
}
if output_format != "text" {
bail!("unknown output format '{}'", output_format);
}
let status = result?;
println!("{}", serde_json::to_string_pretty(&status)?);
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
},
},
)]
/// Unlock the tape drive door
fn unlock(param: Value) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
handle.set_medium_removal(true)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
"output-format": {
schema: OUTPUT_FORMAT,
optional: true,
},
},
},
)]
/// Volume Statistics
fn volume_statistics(param: Value) -> Result<(), Error> {
let output_format = get_output_format(&param);
let mut handle = get_tape_handle(&param)?;
let result = handle.volume_statistics();
if output_format == "json-pretty" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string_pretty(&result)?);
return Ok(());
}
if output_format == "json" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string(&result)?);
return Ok(());
}
if output_format != "text" {
bail!("unknown output format '{}'", output_format);
}
let data = result?;
println!("{}", serde_json::to_string_pretty(&data)?);
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
count: {
schema: FILE_MARK_COUNT_SCHEMA,
optional: true,
},
},
},
)]
/// Write count (default 1) EOF marks at current position.
fn weof(count: Option<usize>, param: Value) -> Result<(), Error> {
let count = count.unwrap_or(1);
let mut handle = get_tape_handle(&param)?;
handle.write_filemarks(count, false)?;
Ok(())
}
#[api(
input: {
properties: {
drive: {
schema: DRIVE_NAME_SCHEMA,
optional: true,
},
device: {
schema: LTO_DRIVE_PATH_SCHEMA,
optional: true,
},
compression: {
description: "Enable/disable compression.",
type: bool,
optional: true,
},
blocksize: {
description: "Set tape drive block_length (0 is variable length).",
type: u32,
minimum: 0,
maximum: 0x80_00_00,
optional: true,
},
buffer_mode: {
description: "Use drive buffer.",
type: bool,
optional: true,
},
defaults: {
description: "Set default options",
type: bool,
optional: true,
},
},
},
)]
/// Set varios drive options
fn options(
compression: Option<bool>,
blocksize: Option<u32>,
buffer_mode: Option<bool>,
defaults: Option<bool>,
param: Value,
) -> Result<(), Error> {
let mut handle = get_tape_handle(&param)?;
if let Some(true) = defaults {
handle.set_default_options()?;
}
handle.set_drive_options(compression, blocksize, buffer_mode)?;
Ok(())
}
fn main() -> Result<(), Error> {
let uid = nix::unistd::Uid::current();
let username = match nix::unistd::User::from_uid(uid)? {
Some(user) => user.name,
None => bail!("unable to get user name"),
};
let std_cmd = |method| {
CliCommand::new(method)
.completion_cb("drive", complete_drive_name)
.completion_cb("device", complete_drive_path)
};
let cmd_def = CliCommandMap::new()
.usage_skip_options(&["device", "drive", "output-format"])
.insert("asf", std_cmd(&API_METHOD_ASF).arg_param(&["count"]))
.insert("bsf", std_cmd(&API_METHOD_BSF).arg_param(&["count"]))
.insert("bsfm", std_cmd(&API_METHOD_BSFM).arg_param(&["count"]))
.insert("bsr", std_cmd(&API_METHOD_BSR).arg_param(&["count"]))
.insert("cartridge-memory", std_cmd(&API_METHOD_CARTRIDGE_MEMORY))
.insert("eject", std_cmd(&API_METHOD_EJECT))
.insert("eod", std_cmd(&API_METHOD_EOD))
.insert("erase", std_cmd(&API_METHOD_ERASE))
.insert("format", std_cmd(&API_METHOD_FORMAT))
.insert("fsf", std_cmd(&API_METHOD_FSF).arg_param(&["count"]))
.insert("fsfm", std_cmd(&API_METHOD_FSFM).arg_param(&["count"]))
.insert("fsr", std_cmd(&API_METHOD_FSR).arg_param(&["count"]))
.insert("load", std_cmd(&API_METHOD_LOAD))
.insert("lock", std_cmd(&API_METHOD_LOCK))
.insert("options", std_cmd(&API_METHOD_OPTIONS))
.insert("rewind", std_cmd(&API_METHOD_REWIND))
.insert("scan", CliCommand::new(&API_METHOD_SCAN))
.insert("status", std_cmd(&API_METHOD_STATUS))
.insert("tape-alert-flags", std_cmd(&API_METHOD_TAPE_ALERT_FLAGS))
.insert("unlock", std_cmd(&API_METHOD_UNLOCK))
.insert("volume-statistics", std_cmd(&API_METHOD_VOLUME_STATISTICS))
.insert("weof", std_cmd(&API_METHOD_WEOF).arg_param(&["count"]))
;
let mut rpcenv = CliEnvironment::new();
rpcenv.set_auth_id(Some(format!("{}@pam", username)));
run_cli_command(cmd_def, rpcenv, None);
Ok(())
}

472
pbs-tape/src/bin/pmtx.rs Normal file
View File

@ -0,0 +1,472 @@
/// SCSI changer command implemented using scsi-generic raw commands
///
/// This is a Rust implementation, meant to replace the 'mtx' command
/// line tool.
///
/// Features:
///
/// - written in Rust
///
/// - json output
///
/// - list serial number for attached drives, so that it is possible
/// to associate drive numbers with drives.
use std::fs::File;
use anyhow::{bail, Error};
use serde_json::Value;
use proxmox::{
api::{
api,
cli::*,
RpcEnvironment,
},
};
use pbs_config::drive::complete_changer_name;
use pbs_api_types::{
SCSI_CHANGER_PATH_SCHEMA, CHANGER_NAME_SCHEMA, ScsiTapeChanger, LtoTapeDrive,
};
use pbs_tape::{
sgutils2::scsi_inquiry,
ElementStatus,
sg_pt_changer,
linux_list_drives::{complete_changer_path, linux_tape_changer_list},
};
fn get_changer_handle(param: &Value) -> Result<File, Error> {
if let Some(name) = param["changer"].as_str() {
let (config, _digest) = pbs_config::drive::config()?;
let changer_config: ScsiTapeChanger = config.lookup("changer", &name)?;
eprintln!("using device {}", changer_config.path);
return sg_pt_changer::open(&changer_config.path);
}
if let Some(device) = param["device"].as_str() {
eprintln!("using device {}", device);
return sg_pt_changer::open(device);
}
if let Ok(name) = std::env::var("PROXMOX_TAPE_DRIVE") {
let (config, _digest) = pbs_config::drive::config()?;
let drive: LtoTapeDrive = config.lookup("lto", &name)?;
if let Some(changer) = drive.changer {
let changer_config: ScsiTapeChanger = config.lookup("changer", &changer)?;
eprintln!("using device {}", changer_config.path);
return sg_pt_changer::open(&changer_config.path);
}
}
if let Ok(device) = std::env::var("CHANGER") {
eprintln!("using device {}", device);
return sg_pt_changer::open(device);
}
bail!("no changer device specified");
}
#[api(
input: {
properties: {
changer: {
schema: CHANGER_NAME_SCHEMA,
optional: true,
},
device: {
schema: SCSI_CHANGER_PATH_SCHEMA,
optional: true,
},
"output-format": {
schema: OUTPUT_FORMAT,
optional: true,
},
},
},
)]
/// Inquiry
fn inquiry(
param: Value,
) -> Result<(), Error> {
let output_format = get_output_format(&param);
let result: Result<_, Error> = proxmox::try_block!({
let mut file = get_changer_handle(&param)?;
let info = scsi_inquiry(&mut file)?;
Ok(info)
});
if output_format == "json-pretty" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string_pretty(&result)?);
return Ok(());
}
if output_format == "json" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string(&result)?);
return Ok(());
}
if output_format != "text" {
bail!("unknown output format '{}'", output_format);
}
let info = result?;
println!("Type: {} ({})", info.peripheral_type_text, info.peripheral_type);
println!("Vendor: {}", info.vendor);
println!("Product: {}", info.product);
println!("Revision: {}", info.revision);
Ok(())
}
#[api(
input: {
properties: {
changer: {
schema: CHANGER_NAME_SCHEMA,
optional: true,
},
device: {
schema: SCSI_CHANGER_PATH_SCHEMA,
optional: true,
},
},
},
)]
/// Inventory
fn inventory(
param: Value,
) -> Result<(), Error> {
let mut file = get_changer_handle(&param)?;
sg_pt_changer::initialize_element_status(&mut file)?;
Ok(())
}
#[api(
input: {
properties: {
changer: {
schema: CHANGER_NAME_SCHEMA,
optional: true,
},
device: {
schema: SCSI_CHANGER_PATH_SCHEMA,
optional: true,
},
slot: {
description: "Storage slot number (source).",
type: u64,
},
drivenum: {
description: "Target drive number (defaults to Drive 0)",
type: u64,
optional: true,
},
},
},
)]
/// Load
fn load(
param: Value,
slot: u64,
drivenum: Option<u64>,
) -> Result<(), Error> {
let mut file = get_changer_handle(&param)?;
let drivenum = drivenum.unwrap_or(0);
sg_pt_changer::load_slot(&mut file, slot, drivenum)?;
Ok(())
}
#[api(
input: {
properties: {
changer: {
schema: CHANGER_NAME_SCHEMA,
optional: true,
},
device: {
schema: SCSI_CHANGER_PATH_SCHEMA,
optional: true,
},
slot: {
description: "Storage slot number (target). If omitted, defaults to the slot that the drive was loaded from.",
type: u64,
optional: true,
},
drivenum: {
description: "Target drive number (defaults to Drive 0)",
type: u64,
optional: true,
},
},
},
)]
/// Unload
fn unload(
param: Value,
slot: Option<u64>,
drivenum: Option<u64>,
) -> Result<(), Error> {
let mut file = get_changer_handle(&param)?;
let drivenum = drivenum.unwrap_or(0);
if let Some(to_slot) = slot {
sg_pt_changer::unload(&mut file, to_slot, drivenum)?;
return Ok(());
}
let status = sg_pt_changer::read_element_status(&mut file)?;
if let Some(info) = status.drives.get(drivenum as usize) {
if let ElementStatus::Empty = info.status {
bail!("Drive {} is empty.", drivenum);
}
if let Some(to_slot) = info.loaded_slot {
// check if original slot is empty/usable
if let Some(slot_info) = status.slots.get(to_slot as usize - 1) {
if let ElementStatus::Empty = slot_info.status {
sg_pt_changer::unload(&mut file, to_slot, drivenum)?;
return Ok(());
}
}
}
if let Some(to_slot) = status.find_free_slot(false) {
sg_pt_changer::unload(&mut file, to_slot, drivenum)?;
return Ok(());
} else {
bail!("Drive '{}' unload failure - no free slot", drivenum);
}
} else {
bail!("Drive {} does not exist.", drivenum);
}
}
#[api(
input: {
properties: {
changer: {
schema: CHANGER_NAME_SCHEMA,
optional: true,
},
device: {
schema: SCSI_CHANGER_PATH_SCHEMA,
optional: true,
},
"output-format": {
schema: OUTPUT_FORMAT,
optional: true,
},
},
},
)]
/// Changer Status
fn status(
param: Value,
) -> Result<(), Error> {
let output_format = get_output_format(&param);
let result: Result<_, Error> = proxmox::try_block!({
let mut file = get_changer_handle(&param)?;
let status = sg_pt_changer::read_element_status(&mut file)?;
Ok(status)
});
if output_format == "json-pretty" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string_pretty(&result)?);
return Ok(());
}
if output_format == "json" {
let result = result.map_err(|err: Error| err.to_string());
println!("{}", serde_json::to_string(&result)?);
return Ok(());
}
if output_format != "text" {
bail!("unknown output format '{}'", output_format);
}
let status = result?;
for (i, transport) in status.transports.iter().enumerate() {
println!("Transport Element (Griper) {:>3}: {:?}",i, transport.status);
}
for (i, drive) in status.drives.iter().enumerate() {
let loaded_txt = match drive.loaded_slot {
Some(slot) => format!(", Source: {}", slot),
None => String::new(),
};
let serial_txt = match drive.drive_serial_number {
Some(ref serial) => format!(", Serial: {}", serial),
None => String::new(),
};
println!(
"Data Transfer Element (Drive) {:>3}: {:?}{}{}",
i, drive.status, loaded_txt, serial_txt,
);
}
for (i, slot) in status.slots.iter().enumerate() {
if slot.import_export {
println!(" Import/Export {:>3}: {:?}", i+1, slot.status);
} else {
println!(" Storage Element {:>3}: {:?}", i+1, slot.status);
}
}
Ok(())
}
#[api(
input: {
properties: {
changer: {
schema: CHANGER_NAME_SCHEMA,
optional: true,
},
device: {
schema: SCSI_CHANGER_PATH_SCHEMA,
optional: true,
},
from: {
description: "Source storage slot number.",
type: u64,
},
to: {
description: "Target storage slot number.",
type: u64,
},
},
},
)]
/// Transfer
fn transfer(
param: Value,
from: u64,
to: u64,
) -> Result<(), Error> {
let mut file = get_changer_handle(&param)?;
sg_pt_changer::transfer_medium(&mut file, from, to)?;
Ok(())
}
#[api(
input: {
properties: {
"output-format": {
schema: OUTPUT_FORMAT,
optional: true,
},
},
},
)]
/// Scan for existing tape changer devices
fn scan(param: Value) -> Result<(), Error> {
let output_format = get_output_format(&param);
let list = linux_tape_changer_list();
if output_format == "json-pretty" {
println!("{}", serde_json::to_string_pretty(&list)?);
return Ok(());
}
if output_format == "json" {
println!("{}", serde_json::to_string(&list)?);
return Ok(());
}
if output_format != "text" {
bail!("unknown output format '{}'", output_format);
}
for item in list.iter() {
println!("{} ({}/{}/{})", item.path, item.vendor, item.model, item.serial);
}
Ok(())
}
fn main() -> Result<(), Error> {
let uid = nix::unistd::Uid::current();
let username = match nix::unistd::User::from_uid(uid)? {
Some(user) => user.name,
None => bail!("unable to get user name"),
};
let cmd_def = CliCommandMap::new()
.usage_skip_options(&["device", "changer", "output-format"])
.insert(
"inquiry",
CliCommand::new(&API_METHOD_INQUIRY)
.completion_cb("changer", complete_changer_name)
.completion_cb("device", complete_changer_path)
)
.insert(
"inventory",
CliCommand::new(&API_METHOD_INVENTORY)
.completion_cb("changer", complete_changer_name)
.completion_cb("device", complete_changer_path)
)
.insert(
"load",
CliCommand::new(&API_METHOD_LOAD)
.arg_param(&["slot"])
.completion_cb("changer", complete_changer_name)
.completion_cb("device", complete_changer_path)
)
.insert(
"unload",
CliCommand::new(&API_METHOD_UNLOAD)
.completion_cb("changer", complete_changer_name)
.completion_cb("device", complete_changer_path)
)
.insert("scan", CliCommand::new(&API_METHOD_SCAN))
.insert(
"status",
CliCommand::new(&API_METHOD_STATUS)
.completion_cb("changer", complete_changer_name)
.completion_cb("device", complete_changer_path)
)
.insert(
"transfer",
CliCommand::new(&API_METHOD_TRANSFER)
.arg_param(&["from", "to"])
.completion_cb("changer", complete_changer_name)
.completion_cb("device", complete_changer_path)
)
;
let mut rpcenv = CliEnvironment::new();
rpcenv.set_auth_id(Some(format!("{}@pam", username)));
run_cli_command(cmd_def, rpcenv, None);
Ok(())
}

View File

@ -0,0 +1,370 @@
use std::io::Read;
use crate::{
TapeRead,
BlockRead,
BlockReadError,
PROXMOX_TAPE_BLOCK_HEADER_MAGIC_1_0,
BlockHeader,
BlockHeaderFlags,
};
/// Read a block stream generated by 'BlockWriter'.
///
/// This class implements 'TapeRead'. It always read whole blocks from
/// the underlying reader, and does additional error checks:
///
/// - check magic number (detect streams not written by 'BlockWriter')
/// - check block size
/// - check block sequence numbers
///
/// The reader consumes the EOF mark after the data stream (if read to
/// the end of the stream).
pub struct BlockedReader<R> {
reader: R,
buffer: Box<BlockHeader>,
seq_nr: u32,
found_end_marker: bool,
incomplete: bool,
got_eod: bool,
read_error: bool,
read_pos: usize,
}
impl <R: BlockRead> BlockedReader<R> {
/// Create a new BlockedReader instance.
///
/// This tries to read the first block. Please inspect the error
/// to detect EOF and EOT.
pub fn open(mut reader: R) -> Result<Self, BlockReadError> {
let mut buffer = BlockHeader::new();
Self::read_block_frame(&mut buffer, &mut reader)?;
let (_size, found_end_marker) = Self::check_buffer(&buffer, 0)?;
let mut incomplete = false;
let mut got_eod = false;
if found_end_marker {
incomplete = buffer.flags.contains(BlockHeaderFlags::INCOMPLETE);
Self::consume_eof_marker(&mut reader)?;
got_eod = true;
}
Ok(Self {
reader,
buffer,
found_end_marker,
incomplete,
got_eod,
seq_nr: 1,
read_error: false,
read_pos: 0,
})
}
fn check_buffer(buffer: &BlockHeader, seq_nr: u32) -> Result<(usize, bool), std::io::Error> {
if buffer.magic != PROXMOX_TAPE_BLOCK_HEADER_MAGIC_1_0 {
proxmox::io_bail!("detected tape block with wrong magic number - not written by proxmox tape");
}
if seq_nr != buffer.seq_nr() {
proxmox::io_bail!(
"detected tape block with wrong sequence number ({} != {})",
seq_nr, buffer.seq_nr())
}
let size = buffer.size();
let found_end_marker = buffer.flags.contains(BlockHeaderFlags::END_OF_STREAM);
if size > buffer.payload.len() {
proxmox::io_bail!("detected tape block with wrong payload size ({} > {}", size, buffer.payload.len());
} else if size == 0 && !found_end_marker {
proxmox::io_bail!("detected tape block with zero payload size");
}
Ok((size, found_end_marker))
}
fn read_block_frame(buffer: &mut BlockHeader, reader: &mut R) -> Result<(), BlockReadError> {
let data = unsafe {
std::slice::from_raw_parts_mut(
(buffer as *mut BlockHeader) as *mut u8,
BlockHeader::SIZE,
)
};
let bytes = reader.read_block(data)?;
if bytes != BlockHeader::SIZE {
return Err(proxmox::io_format_err!("got wrong block size").into());
}
Ok(())
}
fn consume_eof_marker(reader: &mut R) -> Result<(), std::io::Error> {
let mut tmp_buf = [0u8; 512]; // use a small buffer for testing EOF
match reader.read_block(&mut tmp_buf) {
Ok(_) => {
proxmox::io_bail!("detected tape block after block-stream end marker");
}
Err(BlockReadError::EndOfFile) => {
return Ok(());
}
Err(BlockReadError::EndOfStream) => {
proxmox::io_bail!("got unexpected end of tape");
}
Err(BlockReadError::Error(err)) => {
return Err(err);
}
}
}
fn read_block(&mut self, check_end_marker: bool) -> Result<usize, std::io::Error> {
match Self::read_block_frame(&mut self.buffer, &mut self.reader) {
Ok(()) => { /* ok */ }
Err(BlockReadError::EndOfFile) => {
self.got_eod = true;
self.read_pos = self.buffer.payload.len();
if !self.found_end_marker && check_end_marker {
proxmox::io_bail!("detected tape stream without end marker");
}
return Ok(0); // EOD
}
Err(BlockReadError::EndOfStream) => {
proxmox::io_bail!("got unexpected end of tape");
}
Err(BlockReadError::Error(err)) => {
return Err(err);
}
}
let (size, found_end_marker) = Self::check_buffer(&self.buffer, self.seq_nr)?;
self.seq_nr += 1;
if found_end_marker { // consume EOF mark
self.found_end_marker = true;
self.incomplete = self.buffer.flags.contains(BlockHeaderFlags::INCOMPLETE);
Self::consume_eof_marker(&mut self.reader)?;
self.got_eod = true;
}
self.read_pos = 0;
Ok(size)
}
}
impl <R: BlockRead> TapeRead for BlockedReader<R> {
fn is_incomplete(&self) -> Result<bool, std::io::Error> {
if !self.got_eod {
proxmox::io_bail!("is_incomplete failed: EOD not reached");
}
if !self.found_end_marker {
proxmox::io_bail!("is_incomplete failed: no end marker found");
}
Ok(self.incomplete)
}
fn has_end_marker(&self) -> Result<bool, std::io::Error> {
if !self.got_eod {
proxmox::io_bail!("has_end_marker failed: EOD not reached");
}
Ok(self.found_end_marker)
}
// like ReadExt::skip_to_end(), but does not raise an error if the
// stream has no end marker.
fn skip_data(&mut self) -> Result<usize, std::io::Error> {
let mut bytes = 0;
let buffer_size = self.buffer.size();
let rest = (buffer_size as isize) - (self.read_pos as isize);
if rest > 0 {
bytes = rest as usize;
}
loop {
if self.got_eod {
return Ok(bytes);
}
bytes += self.read_block(false)?;
}
}
}
impl <R: BlockRead> Read for BlockedReader<R> {
fn read(&mut self, buffer: &mut [u8]) -> Result<usize, std::io::Error> {
if self.read_error {
proxmox::io_bail!("detected read after error - internal error");
}
let mut buffer_size = self.buffer.size();
let mut rest = (buffer_size as isize) - (self.read_pos as isize);
if rest <= 0 && !self.got_eod { // try to refill buffer
buffer_size = match self.read_block(true) {
Ok(len) => len,
err => {
self.read_error = true;
return err;
}
};
rest = buffer_size as isize;
}
if rest <= 0 {
Ok(0)
} else {
let copy_len = if (buffer.len() as isize) < rest {
buffer.len()
} else {
rest as usize
};
buffer[..copy_len].copy_from_slice(
&self.buffer.payload[self.read_pos..(self.read_pos + copy_len)]);
self.read_pos += copy_len;
Ok(copy_len)
}
}
}
#[cfg(test)]
mod test {
use std::io::Read;
use anyhow::{bail, Error};
use crate::{
TapeWrite,
BlockReadError,
EmulateTapeReader,
EmulateTapeWriter,
PROXMOX_TAPE_BLOCK_SIZE,
BlockedReader,
BlockedWriter,
};
fn write_and_verify(data: &[u8]) -> Result<(), Error> {
let mut tape_data = Vec::new();
{
let writer = EmulateTapeWriter::new(&mut tape_data, 1024*1024*10);
let mut writer = BlockedWriter::new(writer);
writer.write_all(data)?;
writer.finish(false)?;
}
assert_eq!(
tape_data.len(),
((data.len() + PROXMOX_TAPE_BLOCK_SIZE)/PROXMOX_TAPE_BLOCK_SIZE)
*PROXMOX_TAPE_BLOCK_SIZE
);
let reader = &mut &tape_data[..];
let reader = EmulateTapeReader::new(reader);
let mut reader = BlockedReader::open(reader)?;
let mut read_data = Vec::with_capacity(PROXMOX_TAPE_BLOCK_SIZE);
reader.read_to_end(&mut read_data)?;
assert_eq!(data.len(), read_data.len());
assert_eq!(data, &read_data[..]);
Ok(())
}
#[test]
fn empty_stream() -> Result<(), Error> {
write_and_verify(b"")
}
#[test]
fn small_data() -> Result<(), Error> {
write_and_verify(b"ABC")
}
#[test]
fn large_data() -> Result<(), Error> {
let data = proxmox::sys::linux::random_data(1024*1024*5)?;
write_and_verify(&data)
}
#[test]
fn no_data() -> Result<(), Error> {
let tape_data = Vec::new();
let reader = &mut &tape_data[..];
let reader = EmulateTapeReader::new(reader);
match BlockedReader::open(reader) {
Err(BlockReadError::EndOfFile) => { /* OK */ },
_ => bail!("expected EOF"),
}
Ok(())
}
#[test]
fn no_end_marker() -> Result<(), Error> {
let mut tape_data = Vec::new();
{
let writer = EmulateTapeWriter::new(&mut tape_data, 1024*1024);
let mut writer = BlockedWriter::new(writer);
// write at least one block
let data = proxmox::sys::linux::random_data(PROXMOX_TAPE_BLOCK_SIZE)?;
writer.write_all(&data)?;
// but do not call finish here
}
let reader = &mut &tape_data[..];
let reader = EmulateTapeReader::new(reader);
let mut reader = BlockedReader::open(reader)?;
let mut data = Vec::with_capacity(PROXMOX_TAPE_BLOCK_SIZE);
assert!(reader.read_to_end(&mut data).is_err());
Ok(())
}
#[test]
fn small_read_buffer() -> Result<(), Error> {
let mut tape_data = Vec::new();
{
let writer = EmulateTapeWriter::new(&mut tape_data, 1024*1024);
let mut writer = BlockedWriter::new(writer);
writer.write_all(b"ABC")?;
writer.finish(false)?;
}
let reader = &mut &tape_data[..];
let reader = EmulateTapeReader::new(reader);
let mut reader = BlockedReader::open(reader)?;
let mut buf = [0u8; 1];
assert_eq!(reader.read(&mut buf)?, 1, "wrong byte count");
assert_eq!(&buf, b"A");
assert_eq!(reader.read(&mut buf)?, 1, "wrong byte count");
assert_eq!(&buf, b"B");
assert_eq!(reader.read(&mut buf)?, 1, "wrong byte count");
assert_eq!(&buf, b"C");
assert_eq!(reader.read(&mut buf)?, 0, "wrong byte count");
assert_eq!(reader.read(&mut buf)?, 0, "wrong byte count");
Ok(())
}
}

View File

@ -0,0 +1,143 @@
use proxmox::tools::vec;
use crate::{
TapeWrite,
BlockWrite,
BlockHeader,
BlockHeaderFlags,
};
/// Assemble and write blocks of data
///
/// This type implement 'TapeWrite'. Data written is assembled to
/// equally sized blocks (see 'BlockHeader'), which are then written
/// to the underlying writer.
pub struct BlockedWriter<W: BlockWrite> {
writer: W,
buffer: Box<BlockHeader>,
buffer_pos: usize,
seq_nr: u32,
logical_end_of_media: bool,
bytes_written: usize,
wrote_eof: bool,
}
impl <W: BlockWrite> Drop for BlockedWriter<W> {
// Try to make sure to end the file with a filemark
fn drop(&mut self) {
if !self.wrote_eof {
let _ = self.writer.write_filemark();
}
}
}
impl <W: BlockWrite> BlockedWriter<W> {
/// Allow access to underlying writer
pub fn writer_ref_mut(&mut self) -> &mut W {
&mut self.writer
}
/// Creates a new instance.
pub fn new(writer: W) -> Self {
Self {
writer,
buffer: BlockHeader::new(),
buffer_pos: 0,
seq_nr: 0,
logical_end_of_media: false,
bytes_written: 0,
wrote_eof: false,
}
}
fn write_block(buffer: &BlockHeader, writer: &mut W) -> Result<bool, std::io::Error> {
let data = unsafe {
std::slice::from_raw_parts(
(buffer as *const BlockHeader) as *const u8,
BlockHeader::SIZE,
)
};
writer.write_block(data)
}
fn write_eof(&mut self) -> Result<(), std::io::Error> {
if self.wrote_eof {
proxmox::io_bail!("BlockedWriter: detected multiple EOF writes");
}
self.wrote_eof = true;
self.writer.write_filemark()
}
fn write(&mut self, data: &[u8]) -> Result<usize, std::io::Error> {
if data.is_empty() { return Ok(0); }
let rest = self.buffer.payload.len() - self.buffer_pos;
let bytes = if data.len() < rest { data.len() } else { rest };
self.buffer.payload[self.buffer_pos..(self.buffer_pos+bytes)]
.copy_from_slice(&data[..bytes]);
let rest = rest - bytes;
if rest == 0 {
self.buffer.flags = BlockHeaderFlags::empty();
self.buffer.set_size(self.buffer.payload.len());
self.buffer.set_seq_nr(self.seq_nr);
self.seq_nr += 1;
let leom = Self::write_block(&self.buffer, &mut self.writer)?;
if leom { self.logical_end_of_media = true; }
self.buffer_pos = 0;
self.bytes_written += BlockHeader::SIZE;
} else {
self.buffer_pos += bytes;
}
Ok(bytes)
}
}
impl <W: BlockWrite> TapeWrite for BlockedWriter<W> {
fn write_all(&mut self, mut data: &[u8]) -> Result<bool, std::io::Error> {
while !data.is_empty() {
match self.write(data) {
Ok(n) => data = &data[n..],
Err(e) => return Err(e),
}
}
Ok(self.logical_end_of_media)
}
fn bytes_written(&self) -> usize {
self.bytes_written
}
/// flush last block, set END_OF_STREAM flag
///
/// Note: This may write an empty block just including the
/// END_OF_STREAM flag.
fn finish(&mut self, incomplete: bool) -> Result<bool, std::io::Error> {
vec::clear(&mut self.buffer.payload[self.buffer_pos..]);
self.buffer.flags = BlockHeaderFlags::END_OF_STREAM;
if incomplete { self.buffer.flags |= BlockHeaderFlags::INCOMPLETE; }
self.buffer.set_size(self.buffer_pos);
self.buffer.set_seq_nr(self.seq_nr);
self.seq_nr += 1;
self.bytes_written += BlockHeader::SIZE;
let leom = Self::write_block(&self.buffer, &mut self.writer)?;
self.write_eof()?;
Ok(leom)
}
/// Returns if the writer already detected the logical end of media
fn logical_end_of_media(&self) -> bool {
self.logical_end_of_media
}
}

View File

@ -0,0 +1,47 @@
use std::io::Read;
use proxmox::tools::io::ReadExt;
use crate::{BlockRead, BlockReadError, PROXMOX_TAPE_BLOCK_SIZE};
/// Emulate tape read behavior on a normal Reader
///
/// Tapes reads are always return one whole block PROXMOX_TAPE_BLOCK_SIZE.
pub struct EmulateTapeReader<R: Read> {
reader: R,
got_eof: bool,
}
impl <R: Read> EmulateTapeReader<R> {
pub fn new(reader: R) -> Self {
Self { reader, got_eof: false }
}
}
impl <R: Read> BlockRead for EmulateTapeReader<R> {
fn read_block(&mut self, buffer: &mut [u8]) -> Result<usize, BlockReadError> {
if self.got_eof {
return Err(BlockReadError::Error(proxmox::io_format_err!("detected read after EOF!")));
}
match self.reader.read_exact_or_eof(buffer)? {
false => {
self.got_eof = true;
Err(BlockReadError::EndOfFile)
}
true => {
// test buffer len after EOF test (to allow EOF test with small buffers in BufferedReader)
if buffer.len() != PROXMOX_TAPE_BLOCK_SIZE {
return Err(BlockReadError::Error(
proxmox::io_format_err!(
"EmulateTapeReader: read_block with wrong block size ({} != {})",
buffer.len(),
PROXMOX_TAPE_BLOCK_SIZE,
)
));
}
Ok(buffer.len())
}
}
}
}

View File

@ -0,0 +1,68 @@
use std::io::{self, Write};
use crate::{BlockWrite, PROXMOX_TAPE_BLOCK_SIZE};
/// Emulate tape write behavior on a normal Writer
///
/// Data need to be written in blocks of size PROXMOX_TAPE_BLOCK_SIZE.
/// Before reaching the EOT, the writer returns ENOSPC (like a linux
/// tape device).
pub struct EmulateTapeWriter<W> {
block_nr: usize,
max_blocks: usize,
writer: W,
wrote_eof: bool,
}
impl <W: Write> EmulateTapeWriter<W> {
/// Create a new instance allowing to write about max_size bytes
pub fn new(writer: W, max_size: usize) -> Self {
let mut max_blocks = max_size/PROXMOX_TAPE_BLOCK_SIZE;
if max_blocks < 2 {
max_blocks = 2; // at least 2 blocks
}
Self {
block_nr: 0,
wrote_eof: false,
writer,
max_blocks,
}
}
}
impl <W: Write> BlockWrite for EmulateTapeWriter<W> {
fn write_block(&mut self, buffer: &[u8]) -> Result<bool, io::Error> {
if buffer.len() != PROXMOX_TAPE_BLOCK_SIZE {
proxmox::io_bail!("EmulateTapeWriter: got write with wrong block size ({} != {}",
buffer.len(), PROXMOX_TAPE_BLOCK_SIZE);
}
if self.block_nr >= self.max_blocks + 2 {
return Err(io::Error::from_raw_os_error(nix::errno::Errno::ENOSPC as i32));
}
self.writer.write_all(buffer)?;
self.block_nr += 1;
if self.block_nr > self.max_blocks {
Ok(true)
} else {
Ok(false)
}
}
fn write_filemark(&mut self) -> Result<(), std::io::Error> {
if self.wrote_eof {
proxmox::io_bail!("EmulateTapeWriter: detected multiple EOF writes");
}
// do nothing, just record the call
self.wrote_eof = true;
Ok(())
}
}

334
pbs-tape/src/lib.rs Normal file
View File

@ -0,0 +1,334 @@
use std::collections::HashSet;
use anyhow::{bail, Error};
use bitflags::bitflags;
use endian_trait::Endian;
use serde::{Serialize, Deserialize};
use serde_json::Value;
use proxmox::tools::Uuid;
use proxmox::api::schema::parse_property_string;
use pbs_api_types::{ScsiTapeChanger, SLOT_ARRAY_SCHEMA};
pub mod linux_list_drives;
pub mod sgutils2;
mod blocked_reader;
pub use blocked_reader::BlockedReader;
mod blocked_writer;
pub use blocked_writer::BlockedWriter;
mod tape_write;
pub use tape_write::*;
mod tape_read;
pub use tape_read::*;
mod emulate_tape_reader;
pub use emulate_tape_reader::EmulateTapeReader;
mod emulate_tape_writer;
pub use emulate_tape_writer::EmulateTapeWriter;
pub mod sg_tape;
pub mod sg_pt_changer;
/// We use 256KB blocksize (always)
pub const PROXMOX_TAPE_BLOCK_SIZE: usize = 256*1024;
// openssl::sha::sha256(b"Proxmox Tape Block Header v1.0")[0..8]
pub const PROXMOX_TAPE_BLOCK_HEADER_MAGIC_1_0: [u8; 8] = [220, 189, 175, 202, 235, 160, 165, 40];
// openssl::sha::sha256(b"Proxmox Backup Content Header v1.0")[0..8];
pub const PROXMOX_BACKUP_CONTENT_HEADER_MAGIC_1_0: [u8; 8] = [99, 238, 20, 159, 205, 242, 155, 12];
// openssl::sha::sha256(b"Proxmox Backup Tape Label v1.0")[0..8];
pub const PROXMOX_BACKUP_MEDIA_LABEL_MAGIC_1_0: [u8; 8] = [42, 5, 191, 60, 176, 48, 170, 57];
// openssl::sha::sha256(b"Proxmox Backup MediaSet Label v1.0")
pub const PROXMOX_BACKUP_MEDIA_SET_LABEL_MAGIC_1_0: [u8; 8] = [8, 96, 99, 249, 47, 151, 83, 216];
/// Tape Block Header with data payload
///
/// All tape files are written as sequence of blocks.
///
/// Note: this struct is large, never put this on the stack!
/// so we use an unsized type to avoid that.
///
/// Tape data block are always read/written with a fixed size
/// (`PROXMOX_TAPE_BLOCK_SIZE`). But they may contain less data, so the
/// header has an additional size field. For streams of blocks, there
/// is a sequence number (`seq_nr`) which may be use for additional
/// error checking.
#[repr(C,packed)]
pub struct BlockHeader {
/// fixed value `PROXMOX_TAPE_BLOCK_HEADER_MAGIC_1_0`
pub magic: [u8; 8],
pub flags: BlockHeaderFlags,
/// size as 3 bytes unsigned, little endian
pub size: [u8; 3],
/// block sequence number
pub seq_nr: u32,
pub payload: [u8],
}
bitflags! {
/// Header flags (e.g. `END_OF_STREAM` or `INCOMPLETE`)
pub struct BlockHeaderFlags: u8 {
/// Marks the last block in a stream.
const END_OF_STREAM = 0b00000001;
/// Mark multivolume streams (when set in the last block)
const INCOMPLETE = 0b00000010;
}
}
#[derive(Endian, Copy, Clone, Debug)]
#[repr(C,packed)]
/// Media Content Header
///
/// All tape files start with this header. The header may contain some
/// informational data indicated by `size`.
///
/// `| MediaContentHeader | header data (size) | stream data |`
///
/// Note: The stream data following may be of any size.
pub struct MediaContentHeader {
/// fixed value `PROXMOX_BACKUP_CONTENT_HEADER_MAGIC_1_0`
pub magic: [u8; 8],
/// magic number for the content following
pub content_magic: [u8; 8],
/// unique ID to identify this data stream
pub uuid: [u8; 16],
/// stream creation time
pub ctime: i64,
/// Size of header data
pub size: u32,
/// Part number for multipart archives.
pub part_number: u8,
/// Reserved for future use
pub reserved_0: u8,
/// Reserved for future use
pub reserved_1: u8,
/// Reserved for future use
pub reserved_2: u8,
}
impl MediaContentHeader {
/// Create a new instance with autogenerated Uuid
pub fn new(content_magic: [u8; 8], size: u32) -> Self {
let uuid = *proxmox::tools::uuid::Uuid::generate()
.into_inner();
Self {
magic: PROXMOX_BACKUP_CONTENT_HEADER_MAGIC_1_0,
content_magic,
uuid,
ctime: proxmox::tools::time::epoch_i64(),
size,
part_number: 0,
reserved_0: 0,
reserved_1: 0,
reserved_2: 0,
}
}
/// Helper to check magic numbers and size constraints
pub fn check(&self, content_magic: [u8; 8], min_size: u32, max_size: u32) -> Result<(), Error> {
if self.magic != PROXMOX_BACKUP_CONTENT_HEADER_MAGIC_1_0 {
bail!("MediaContentHeader: wrong magic");
}
if self.content_magic != content_magic {
bail!("MediaContentHeader: wrong content magic");
}
if self.size < min_size || self.size > max_size {
bail!("MediaContentHeader: got unexpected size");
}
Ok(())
}
/// Returns the content Uuid
pub fn content_uuid(&self) -> Uuid {
Uuid::from(self.uuid)
}
}
impl BlockHeader {
pub const SIZE: usize = PROXMOX_TAPE_BLOCK_SIZE;
/// Allocates a new instance on the heap
pub fn new() -> Box<Self> {
use std::alloc::{alloc_zeroed, Layout};
// align to PAGESIZE, so that we can use it with SG_IO
let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) } as usize;
let mut buffer = unsafe {
let ptr = alloc_zeroed(
Layout::from_size_align(Self::SIZE, page_size)
.unwrap(),
);
Box::from_raw(
std::slice::from_raw_parts_mut(ptr, Self::SIZE - 16)
as *mut [u8] as *mut Self
)
};
buffer.magic = PROXMOX_TAPE_BLOCK_HEADER_MAGIC_1_0;
buffer
}
/// Set the `size` field
pub fn set_size(&mut self, size: usize) {
let size = size.to_le_bytes();
self.size.copy_from_slice(&size[..3]);
}
/// Returns the `size` field
pub fn size(&self) -> usize {
(self.size[0] as usize) + ((self.size[1] as usize)<<8) + ((self.size[2] as usize)<<16)
}
/// Set the `seq_nr` field
pub fn set_seq_nr(&mut self, seq_nr: u32) {
self.seq_nr = seq_nr.to_le();
}
/// Returns the `seq_nr` field
pub fn seq_nr(&self) -> u32 {
u32::from_le(self.seq_nr)
}
}
/// Changer element status.
///
/// Drive and slots may be `Empty`, or contain some media, either
/// with known volume tag `VolumeTag(String)`, or without (`Full`).
#[derive(Serialize, Deserialize, Debug)]
pub enum ElementStatus {
Empty,
Full,
VolumeTag(String),
}
/// Changer drive status.
#[derive(Serialize, Deserialize)]
pub struct DriveStatus {
/// The slot the element was loaded from (if known).
pub loaded_slot: Option<u64>,
/// The status.
pub status: ElementStatus,
/// Drive Identifier (Serial number)
pub drive_serial_number: Option<String>,
/// Drive Vendor
pub vendor: Option<String>,
/// Drive Model
pub model: Option<String>,
/// Element Address
pub element_address: u16,
}
/// Storage element status.
#[derive(Serialize, Deserialize)]
pub struct StorageElementStatus {
/// Flag for Import/Export slots
pub import_export: bool,
/// The status.
pub status: ElementStatus,
/// Element Address
pub element_address: u16,
}
/// Transport element status.
#[derive(Serialize, Deserialize)]
pub struct TransportElementStatus {
/// The status.
pub status: ElementStatus,
/// Element Address
pub element_address: u16,
}
/// Changer status - show drive/slot usage
#[derive(Serialize, Deserialize)]
pub struct MtxStatus {
/// List of known drives
pub drives: Vec<DriveStatus>,
/// List of known storage slots
pub slots: Vec<StorageElementStatus>,
/// Transport elements
///
/// Note: Some libraries do not report transport elements.
pub transports: Vec<TransportElementStatus>,
}
impl MtxStatus {
pub fn slot_address(&self, slot: u64) -> Result<u16, Error> {
if slot == 0 {
bail!("invalid slot number '{}' (slots numbers starts at 1)", slot);
}
if slot > (self.slots.len() as u64) {
bail!("invalid slot number '{}' (max {} slots)", slot, self.slots.len());
}
Ok(self.slots[(slot -1) as usize].element_address)
}
pub fn drive_address(&self, drivenum: u64) -> Result<u16, Error> {
if drivenum >= (self.drives.len() as u64) {
bail!("invalid drive number '{}'", drivenum);
}
Ok(self.drives[drivenum as usize].element_address)
}
pub fn transport_address(&self) -> u16 {
// simply use first transport
// (are there changers exposing more than one?)
// defaults to 0 for changer that do not report transports
self
.transports
.get(0)
.map(|t| t.element_address)
.unwrap_or(0u16)
}
pub fn find_free_slot(&self, import_export: bool) -> Option<u64> {
let mut free_slot = None;
for (i, slot_info) in self.slots.iter().enumerate() {
if slot_info.import_export != import_export {
continue; // skip slots of wrong type
}
if let ElementStatus::Empty = slot_info.status {
free_slot = Some((i+1) as u64);
break;
}
}
free_slot
}
pub fn mark_import_export_slots(&mut self, config: &ScsiTapeChanger) -> Result<(), Error>{
let mut export_slots: HashSet<u64> = HashSet::new();
if let Some(slots) = &config.export_slots {
let slots: Value = parse_property_string(&slots, &SLOT_ARRAY_SCHEMA)?;
export_slots = slots
.as_array()
.unwrap()
.iter()
.filter_map(|v| v.as_u64())
.collect();
}
for (i, entry) in self.slots.iter_mut().enumerate() {
let slot = i as u64 + 1;
if export_slots.contains(&slot) {
entry.import_export = true; // mark as IMPORT/EXPORT
}
}
Ok(())
}
}

View File

@ -0,0 +1,322 @@
use std::path::{Path, PathBuf};
use std::collections::HashMap;
use std::fs::{OpenOptions, File};
use std::os::unix::fs::OpenOptionsExt;
use std::os::unix::io::AsRawFd;
use anyhow::{bail, format_err, Error};
use nix::fcntl::{fcntl, FcntlArg, OFlag};
use proxmox::sys::error::SysResult;
use pbs_tools::fs::scan_subdir;
use pbs_api_types::{DeviceKind, OptionalDeviceIdentification, TapeDeviceInfo};
lazy_static::lazy_static!{
static ref SCSI_GENERIC_NAME_REGEX: regex::Regex =
regex::Regex::new(r"^sg\d+$").unwrap();
}
/// List linux tape changer devices
pub fn linux_tape_changer_list() -> Vec<TapeDeviceInfo> {
let mut list = Vec::new();
let dir_iter = match scan_subdir(
libc::AT_FDCWD,
"/sys/class/scsi_generic",
&SCSI_GENERIC_NAME_REGEX)
{
Err(_) => return list,
Ok(iter) => iter,
};
for item in dir_iter {
let item = match item {
Err(_) => continue,
Ok(item) => item,
};
let name = item.file_name().to_str().unwrap().to_string();
let mut sys_path = PathBuf::from("/sys/class/scsi_generic");
sys_path.push(&name);
let device = match udev::Device::from_syspath(&sys_path) {
Err(_) => continue,
Ok(device) => device,
};
let devnum = match device.devnum() {
None => continue,
Some(devnum) => devnum,
};
let parent = match device.parent() {
None => continue,
Some(parent) => parent,
};
match parent.attribute_value("type") {
Some(type_osstr) => {
if type_osstr != "8" {
continue;
}
}
_ => { continue; }
}
// let mut test_path = sys_path.clone();
// test_path.push("device/scsi_changer");
// if !test_path.exists() { continue; }
let _dev_path = match device.devnode().map(Path::to_owned) {
None => continue,
Some(dev_path) => dev_path,
};
let serial = match device.property_value("ID_SCSI_SERIAL")
.map(std::ffi::OsString::from)
.and_then(|s| if let Ok(s) = s.into_string() { Some(s) } else { None })
{
None => continue,
Some(serial) => serial,
};
let vendor = device.property_value("ID_VENDOR")
.map(std::ffi::OsString::from)
.and_then(|s| if let Ok(s) = s.into_string() { Some(s) } else { None })
.unwrap_or_else(|| String::from("unknown"));
let model = device.property_value("ID_MODEL")
.map(std::ffi::OsString::from)
.and_then(|s| if let Ok(s) = s.into_string() { Some(s) } else { None })
.unwrap_or_else(|| String::from("unknown"));
let dev_path = format!("/dev/tape/by-id/scsi-{}", serial);
if PathBuf::from(&dev_path).exists() {
list.push(TapeDeviceInfo {
kind: DeviceKind::Changer,
path: dev_path,
serial,
vendor,
model,
major: unsafe { libc::major(devnum) },
minor: unsafe { libc::minor(devnum) },
});
}
}
list
}
/// List LTO drives
pub fn lto_tape_device_list() -> Vec<TapeDeviceInfo> {
let mut list = Vec::new();
let dir_iter = match scan_subdir(
libc::AT_FDCWD,
"/sys/class/scsi_generic",
&SCSI_GENERIC_NAME_REGEX)
{
Err(_) => return list,
Ok(iter) => iter,
};
for item in dir_iter {
let item = match item {
Err(_) => continue,
Ok(item) => item,
};
let name = item.file_name().to_str().unwrap().to_string();
let mut sys_path = PathBuf::from("/sys/class/scsi_generic");
sys_path.push(&name);
let device = match udev::Device::from_syspath(&sys_path) {
Err(_) => continue,
Ok(device) => device,
};
let devnum = match device.devnum() {
None => continue,
Some(devnum) => devnum,
};
let parent = match device.parent() {
None => continue,
Some(parent) => parent,
};
match parent.attribute_value("type") {
Some(type_osstr) => {
if type_osstr != "1" {
continue;
}
}
_ => { continue; }
}
// let mut test_path = sys_path.clone();
// test_path.push("device/scsi_tape");
// if !test_path.exists() { continue; }
let _dev_path = match device.devnode().map(Path::to_owned) {
None => continue,
Some(dev_path) => dev_path,
};
let serial = match device.property_value("ID_SCSI_SERIAL")
.map(std::ffi::OsString::from)
.and_then(|s| if let Ok(s) = s.into_string() { Some(s) } else { None })
{
None => continue,
Some(serial) => serial,
};
let vendor = device.property_value("ID_VENDOR")
.map(std::ffi::OsString::from)
.and_then(|s| if let Ok(s) = s.into_string() { Some(s) } else { None })
.unwrap_or_else(|| String::from("unknown"));
let model = device.property_value("ID_MODEL")
.map(std::ffi::OsString::from)
.and_then(|s| if let Ok(s) = s.into_string() { Some(s) } else { None })
.unwrap_or_else(|| String::from("unknown"));
let dev_path = format!("/dev/tape/by-id/scsi-{}-sg", serial);
if PathBuf::from(&dev_path).exists() {
list.push(TapeDeviceInfo {
kind: DeviceKind::Tape,
path: dev_path,
serial,
vendor,
model,
major: unsafe { libc::major(devnum) },
minor: unsafe { libc::minor(devnum) },
});
}
}
list
}
/// Test if a device exists, and returns associated `TapeDeviceInfo`
pub fn lookup_device<'a>(
devices: &'a[TapeDeviceInfo],
path: &str,
) -> Option<&'a TapeDeviceInfo> {
if let Ok(stat) = nix::sys::stat::stat(path) {
let major = unsafe { libc::major(stat.st_rdev) };
let minor = unsafe { libc::minor(stat.st_rdev) };
devices.iter().find(|d| d.major == major && d.minor == minor)
} else {
None
}
}
/// Lookup optional drive identification attributes
pub fn lookup_device_identification<'a>(
devices: &'a[TapeDeviceInfo],
path: &str,
) -> OptionalDeviceIdentification {
if let Some(info) = lookup_device(devices, path) {
OptionalDeviceIdentification {
vendor: Some(info.vendor.clone()),
model: Some(info.model.clone()),
serial: Some(info.serial.clone()),
}
} else {
OptionalDeviceIdentification {
vendor: None,
model: None,
serial: None,
}
}
}
/// Make sure path is a lto tape device
pub fn check_drive_path(
drives: &[TapeDeviceInfo],
path: &str,
) -> Result<(), Error> {
if lookup_device(drives, path).is_none() {
bail!("path '{}' is not a lto SCSI-generic tape device", path);
}
Ok(())
}
/// Check for correct Major/Minor numbers
pub fn check_tape_is_lto_tape_device(file: &File) -> Result<(), Error> {
let stat = nix::sys::stat::fstat(file.as_raw_fd())?;
let devnum = stat.st_rdev;
let major = unsafe { libc::major(devnum) };
let _minor = unsafe { libc::minor(devnum) };
if major == 9 {
bail!("not a scsi-generic tape device (cannot use linux tape devices)");
}
if major != 21 {
bail!("not a scsi-generic tape device");
}
Ok(())
}
/// Opens a Lto tape device
///
/// The open call use O_NONBLOCK, but that flag is cleard after open
/// succeeded. This also checks if the device is a non-rewinding tape
/// device.
pub fn open_lto_tape_device(
path: &str,
) -> Result<File, Error> {
let file = OpenOptions::new()
.read(true)
.write(true)
.custom_flags(libc::O_NONBLOCK)
.open(path)?;
// clear O_NONBLOCK from now on.
let flags = fcntl(file.as_raw_fd(), FcntlArg::F_GETFL)
.into_io_result()?;
let mut flags = OFlag::from_bits_truncate(flags);
flags.remove(OFlag::O_NONBLOCK);
fcntl(file.as_raw_fd(), FcntlArg::F_SETFL(flags))
.into_io_result()?;
check_tape_is_lto_tape_device(&file)
.map_err(|err| format_err!("device type check {:?} failed - {}", path, err))?;
Ok(file)
}
// shell completion helper
/// List changer device paths
pub fn complete_changer_path(_arg: &str, _param: &HashMap<String, String>) -> Vec<String> {
linux_tape_changer_list().iter().map(|v| v.path.clone()).collect()
}
/// List tape device paths
pub fn complete_drive_path(_arg: &str, _param: &HashMap<String, String>) -> Vec<String> {
lto_tape_device_list().iter().map(|v| v.path.clone()).collect()
}

View File

@ -0,0 +1,950 @@
//! SCSI changer implementation using libsgutil2
use std::os::unix::prelude::AsRawFd;
use std::io::Read;
use std::collections::HashMap;
use std::path::Path;
use std::fs::{OpenOptions, File};
use anyhow::{bail, format_err, Error};
use endian_trait::Endian;
use proxmox::tools::io::ReadExt;
use pbs_api_types::ScsiTapeChanger;
use crate::{
ElementStatus,MtxStatus,TransportElementStatus,DriveStatus,StorageElementStatus,
sgutils2::{
SgRaw,
SENSE_KEY_NOT_READY,
ScsiError,
scsi_ascii_to_string,
scsi_inquiry,
},
};
const SCSI_CHANGER_DEFAULT_TIMEOUT: usize = 60*5; // 5 minutes
const SCSI_VOLUME_TAG_LEN: usize = 36;
/// Initialize element status (Inventory)
pub fn initialize_element_status<F: AsRawFd>(file: &mut F) -> Result<(), Error> {
let mut sg_raw = SgRaw::new(file, 64)?;
// like mtx(1), set a very long timeout (30 minutes)
sg_raw.set_timeout(30*60);
let mut cmd = Vec::new();
cmd.extend(&[0x07, 0, 0, 0, 0, 0]); // INITIALIZE ELEMENT STATUS (07h)
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("initializte element status (07h) failed - {}", err))?;
Ok(())
}
#[repr(C, packed)]
#[derive(Endian)]
struct AddressAssignmentPage {
data_len: u8,
reserved1: u8,
reserved2: u8,
block_descriptor_len: u8,
page_code: u8,
additional_page_len: u8,
first_transport_element_address: u16,
transport_element_count: u16,
first_storage_element_address: u16,
storage_element_count: u16,
first_import_export_element_address: u16,
import_export_element_count: u16,
first_tranfer_element_address: u16,
transfer_element_count: u16,
reserved22: u8,
reserved23: u8,
}
/// Execute scsi commands, optionally repeat the command until
/// successful or timeout (sleep 1 second between invovations)
///
/// Timeout is 5 seconds. If the device reports "Not Ready - becoming
/// ready", we wait up to 5 minutes.
///
/// Skipped errors are printed on stderr.
fn execute_scsi_command<F: AsRawFd>(
sg_raw: &mut SgRaw<F>,
cmd: &[u8],
error_prefix: &str,
retry: bool,
) -> Result<Vec<u8>, Error> {
let start = std::time::SystemTime::now();
let mut last_msg: Option<String> = None;
let mut timeout = std::time::Duration::new(5, 0); // short timeout by default
loop {
match sg_raw.do_command(&cmd) {
Ok(data) => return Ok(data.to_vec()),
Err(err) if !retry => bail!("{} failed: {}", error_prefix, err),
Err(err) => {
let msg = err.to_string();
if let Some(ref last) = last_msg {
if &msg != last {
eprintln!("{}", err);
last_msg = Some(msg);
}
} else {
eprintln!("{}", err);
last_msg = Some(msg);
}
if let ScsiError::Sense(ref sense) = err {
// Not Ready - becoming ready
if sense.sense_key == SENSE_KEY_NOT_READY && sense.asc == 0x04 && sense.ascq == 1 {
// wait up to 5 minutes, long enough to finish inventorize
timeout = std::time::Duration::new(5*60, 0);
}
}
if start.elapsed()? > timeout {
bail!("{} failed: {}", error_prefix, err);
}
std::thread::sleep(std::time::Duration::new(1, 0));
continue; // try again
}
}
}
}
fn read_element_address_assignment<F: AsRawFd>(
file: &mut F,
) -> Result<AddressAssignmentPage, Error> {
let allocation_len: u8 = u8::MAX;
let mut sg_raw = SgRaw::new(file, allocation_len as usize)?;
sg_raw.set_timeout(SCSI_CHANGER_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.push(0x1A); // MODE SENSE6 (1Ah)
cmd.push(0x08); // DBD=1 (The Disable Block Descriptors)
cmd.push(0x1D); // Element Address Assignment Page
cmd.push(0);
cmd.push(allocation_len); // allocation len
cmd.push(0); //control
let data = execute_scsi_command(&mut sg_raw, &cmd, "read element address assignment", true)?;
proxmox::try_block!({
let mut reader = &data[..];
let page: AddressAssignmentPage = unsafe { reader.read_be_value()? };
if page.data_len != 23 {
bail!("got unexpected page len ({} != 23)", page.data_len);
}
Ok(page)
}).map_err(|err: Error| format_err!("decode element address assignment page failed - {}", err))
}
fn scsi_move_medium_cdb(
medium_transport_address: u16,
source_element_address: u16,
destination_element_address: u16,
) -> Vec<u8> {
let mut cmd = Vec::new();
cmd.push(0xA5); // MOVE MEDIUM (A5h)
cmd.push(0); // reserved
cmd.extend(&medium_transport_address.to_be_bytes());
cmd.extend(&source_element_address.to_be_bytes());
cmd.extend(&destination_element_address.to_be_bytes());
cmd.push(0); // reserved
cmd.push(0); // reserved
cmd.push(0); // Invert=0
cmd.push(0); // control
cmd
}
/// Load media from storage slot into drive
pub fn load_slot(
file: &mut File,
from_slot: u64,
drivenum: u64,
) -> Result<(), Error> {
let status = read_element_status(file)?;
let transport_address = status.transport_address();
let source_element_address = status.slot_address(from_slot)?;
let drive_element_address = status.drive_address(drivenum)?;
let cmd = scsi_move_medium_cdb(
transport_address,
source_element_address,
drive_element_address,
);
let mut sg_raw = SgRaw::new(file, 64)?;
sg_raw.set_timeout(SCSI_CHANGER_DEFAULT_TIMEOUT);
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("load drive failed - {}", err))?;
Ok(())
}
/// Unload media from drive into a storage slot
pub fn unload(
file: &mut File,
to_slot: u64,
drivenum: u64,
) -> Result<(), Error> {
let status = read_element_status(file)?;
let transport_address = status.transport_address();
let target_element_address = status.slot_address(to_slot)?;
let drive_element_address = status.drive_address(drivenum)?;
let cmd = scsi_move_medium_cdb(
transport_address,
drive_element_address,
target_element_address,
);
let mut sg_raw = SgRaw::new(file, 64)?;
sg_raw.set_timeout(SCSI_CHANGER_DEFAULT_TIMEOUT);
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("unload drive failed - {}", err))?;
Ok(())
}
/// Transfer medium from one storage slot to another
pub fn transfer_medium<F: AsRawFd>(
file: &mut F,
from_slot: u64,
to_slot: u64,
) -> Result<(), Error> {
let status = read_element_status(file)?;
let transport_address = status.transport_address();
let source_element_address = status.slot_address(from_slot)?;
let target_element_address = status.slot_address(to_slot)?;
let cmd = scsi_move_medium_cdb(
transport_address,
source_element_address,
target_element_address,
);
let mut sg_raw = SgRaw::new(file, 64)?;
sg_raw.set_timeout(SCSI_CHANGER_DEFAULT_TIMEOUT);
sg_raw.do_command(&cmd)
.map_err(|err| {
format_err!("transfer medium from slot {} to slot {} failed - {}",
from_slot, to_slot, err)
})?;
Ok(())
}
#[derive(Clone, Copy)]
enum ElementType {
MediumTransport,
Storage,
ImportExport,
DataTransfer,
DataTransferWithDVCID,
}
impl ElementType {
fn byte1(&self) -> u8 {
let volume_tag_bit = 1u8 << 4;
match *self {
ElementType::MediumTransport => volume_tag_bit | 1,
ElementType::Storage => volume_tag_bit | 2,
ElementType::ImportExport => volume_tag_bit | 3,
ElementType::DataTransfer => volume_tag_bit | 4,
// some changers cannot get voltag + dvcid at the same time
ElementType::DataTransferWithDVCID => 4,
}
}
fn byte6(&self) -> u8 {
match *self {
ElementType::DataTransferWithDVCID => 0b001, // Mixed=0,CurData=0,DVCID=1
_ => 0b000, // Mixed=0,CurData=0,DVCID=0
}
}
}
fn scsi_read_element_status_cdb(
start_element_address: u16,
number_of_elements: u16,
element_type: ElementType,
allocation_len: u32,
) -> Vec<u8> {
let mut cmd = Vec::new();
cmd.push(0xB8); // READ ELEMENT STATUS (B8h)
cmd.push(element_type.byte1());
cmd.extend(&start_element_address.to_be_bytes());
cmd.extend(&number_of_elements.to_be_bytes());
cmd.push(element_type.byte6());
cmd.extend(&allocation_len.to_be_bytes()[1..4]);
cmd.push(0);
cmd.push(0);
cmd
}
// query a single element type from the changer
fn get_element<F: AsRawFd>(
sg_raw: &mut SgRaw<F>,
element_type: ElementType,
allocation_len: u32,
mut retry: bool,
) -> Result<DecodedStatusPage, Error> {
let mut start_element_address = 0;
let number_of_elements: u16 = 1000; // some changers limit the query
let mut result = DecodedStatusPage {
last_element_address: None,
transports: Vec::new(),
drives: Vec::new(),
storage_slots: Vec::new(),
import_export_slots: Vec::new(),
};
loop {
let cmd = scsi_read_element_status_cdb(start_element_address, number_of_elements, element_type, allocation_len);
let data = execute_scsi_command(sg_raw, &cmd, "read element status (B8h)", retry)?;
let page = decode_element_status_page(&data, start_element_address)?;
retry = false; // only retry the first command
let returned_number_of_elements = page.transports.len()
+ page.drives.len()
+ page.storage_slots.len()
+ page.import_export_slots.len();
result.transports.extend(page.transports);
result.drives.extend(page.drives);
result.storage_slots.extend(page.storage_slots);
result.import_export_slots.extend(page.import_export_slots);
result.last_element_address = page.last_element_address;
if let Some(last_element_address) = page.last_element_address {
if last_element_address < start_element_address {
bail!("got strange element address");
}
if returned_number_of_elements >= (number_of_elements as usize) {
start_element_address = last_element_address + 1;
continue; // we possibly have to read additional elements
}
}
break;
}
Ok(result)
}
/// Read element status.
pub fn read_element_status<F: AsRawFd>(file: &mut F) -> Result<MtxStatus, Error> {
let inquiry = scsi_inquiry(file)?;
if inquiry.peripheral_type != 8 {
bail!("wrong device type (not a scsi changer device)");
}
// first, request address assignment (used for sanity checks)
let setup = read_element_address_assignment(file)?;
let allocation_len: u32 = 0x10000;
let mut sg_raw = SgRaw::new(file, allocation_len as usize)?;
sg_raw.set_timeout(SCSI_CHANGER_DEFAULT_TIMEOUT);
let mut drives = Vec::new();
let mut storage_slots = Vec::new();
let mut import_export_slots = Vec::new();
let mut transports = Vec::new();
let page = get_element(&mut sg_raw, ElementType::Storage, allocation_len, true)?;
storage_slots.extend(page.storage_slots);
let page = get_element(&mut sg_raw, ElementType::ImportExport, allocation_len, false)?;
import_export_slots.extend(page.import_export_slots);
let page = get_element(&mut sg_raw, ElementType::DataTransfer, allocation_len, false)?;
drives.extend(page.drives);
// get the serial + vendor + model,
// some changer require this to be an extra scsi command
let page = get_element(&mut sg_raw, ElementType::DataTransferWithDVCID, allocation_len, false)?;
// should be in same order and same count, but be on the safe side.
// there should not be too many drives normally
for drive in drives.iter_mut() {
for drive2 in &page.drives {
if drive2.element_address == drive.element_address {
drive.vendor = drive2.vendor.clone();
drive.model = drive2.model.clone();
drive.drive_serial_number = drive2.drive_serial_number.clone();
}
}
}
let page = get_element(&mut sg_raw, ElementType::MediumTransport, allocation_len, false)?;
transports.extend(page.transports);
let transport_count = setup.transport_element_count as usize;
let storage_count = setup.storage_element_count as usize;
let import_export_count = setup.import_export_element_count as usize;
let transfer_count = setup.transfer_element_count as usize;
if transport_count != transports.len() {
bail!(
"got wrong number of transport elements: expoected {}, got{}",
transport_count,
transports.len()
);
}
if storage_count != storage_slots.len() {
bail!(
"got wrong number of storage elements: expected {}, got {}",
storage_count,
storage_slots.len(),
);
}
if import_export_count != import_export_slots.len() {
bail!(
"got wrong number of import/export elements: expected {}, got {}",
import_export_count,
import_export_slots.len(),
);
}
if transfer_count != drives.len() {
bail!(
"got wrong number of transfer elements: expected {}, got {}",
transfer_count,
drives.len(),
);
}
// create same virtual slot order as mtx(1)
// - storage slots first
// - import export slots at the end
let mut slots = storage_slots;
slots.extend(import_export_slots);
let mut status = MtxStatus { transports, drives, slots };
// sanity checks
if status.drives.is_empty() {
bail!("no data transfer elements reported");
}
if status.slots.is_empty() {
bail!("no storage elements reported");
}
// compute virtual storage slot to element_address map
let mut slot_map = HashMap::new();
for (i, slot) in status.slots.iter().enumerate() {
slot_map.insert(slot.element_address, (i + 1) as u64);
}
// translate element addresses in loaded_lot
for drive in status.drives.iter_mut() {
if let Some(source_address) = drive.loaded_slot {
let source_address = source_address as u16;
drive.loaded_slot = slot_map.get(&source_address).map(|v| *v);
}
}
Ok(status)
}
/// Read status and map import-export slots from config
pub fn status(config: &ScsiTapeChanger) -> Result<MtxStatus, Error> {
let path = &config.path;
let mut file = open(path)
.map_err(|err| format_err!("error opening '{}': {}", path, err))?;
let mut status = read_element_status(&mut file)
.map_err(|err| format_err!("error reading element status: {}", err))?;
status.mark_import_export_slots(&config)?;
Ok(status)
}
#[repr(C, packed)]
#[derive(Endian)]
struct ElementStatusHeader {
first_element_address_reported: u16,
number_of_elements_available: u16,
reserved: u8,
byte_count_of_report_available: [u8;3],
}
#[repr(C, packed)]
#[derive(Endian)]
struct SubHeader {
element_type_code: u8,
flags: u8,
descriptor_length: u16,
reserved: u8,
byte_count_of_descriptor_data_available: [u8;3],
}
impl SubHeader {
fn parse_optional_volume_tag<R: Read>(
&self,
reader: &mut R,
full: bool,
) -> Result<Option<String>, Error> {
if (self.flags & 128) != 0 { // has PVolTag
let tmp = reader.read_exact_allocated(SCSI_VOLUME_TAG_LEN)?;
if full {
let volume_tag = scsi_ascii_to_string(&tmp);
return Ok(Some(volume_tag));
}
}
Ok(None)
}
// AFAIK, tape changer do not use AlternateVolumeTag
// but parse anyways, just to be sure
fn skip_alternate_volume_tag<R: Read>(
&self,
reader: &mut R,
) -> Result<Option<String>, Error> {
if (self.flags & 64) != 0 { // has AVolTag
let _tmp = reader.read_exact_allocated(SCSI_VOLUME_TAG_LEN)?;
}
Ok(None)
}
}
#[repr(C, packed)]
#[derive(Endian)]
struct TransportDescriptor { // Robot/Griper
element_address: u16,
flags1: u8,
reserved_3: u8,
additional_sense_code: u8,
additional_sense_code_qualifier: u8,
reserved_6: [u8;3],
flags2: u8,
source_storage_element_address: u16,
// volume tag and Mixed media descriptor follows (depends on flags)
}
#[repr(C, packed)]
#[derive(Endian)]
struct TransferDescriptor { // Tape drive
element_address: u16,
flags1: u8,
reserved_3: u8,
additional_sense_code: u8,
additional_sense_code_qualifier: u8,
id_valid: u8,
scsi_bus_address: u8,
reserved_8: u8,
flags2: u8,
source_storage_element_address: u16,
// volume tag, drive identifier and Mixed media descriptor follows
// (depends on flags)
}
#[repr(C, packed)]
#[derive(Endian)]
struct DvcidHead { // Drive Identifier Header
code_set: u8,
identifier_type: u8,
reserved: u8,
identifier_len: u8,
// Identifier follows
}
#[repr(C, packed)]
#[derive(Endian)]
struct StorageDescriptor { // Mail Slot
element_address: u16,
flags1: u8,
reserved_3: u8,
additional_sense_code: u8,
additional_sense_code_qualifier: u8,
reserved_6: [u8;3],
flags2: u8,
source_storage_element_address: u16,
// volume tag and Mixed media descriptor follows (depends on flags)
}
struct DecodedStatusPage {
last_element_address: Option<u16>,
transports: Vec<TransportElementStatus>,
drives: Vec<DriveStatus>,
storage_slots: Vec<StorageElementStatus>,
import_export_slots: Vec<StorageElementStatus>,
}
fn create_element_status(full: bool, volume_tag: Option<String>) -> ElementStatus {
if full {
if let Some(volume_tag) = volume_tag {
ElementStatus::VolumeTag(volume_tag)
} else {
ElementStatus::Full
}
} else {
ElementStatus::Empty
}
}
struct DvcidInfo {
vendor: Option<String>,
model: Option<String>,
serial: Option<String>,
}
fn decode_dvcid_info<R: Read>(reader: &mut R) -> Result<DvcidInfo, Error> {
let dvcid: DvcidHead = unsafe { reader.read_be_value()? };
let (serial, vendor, model) = match (dvcid.code_set, dvcid.identifier_type) {
(2, 0) => { // Serial number only (Quantum Superloader3 uses this)
let serial = reader.read_exact_allocated(dvcid.identifier_len as usize)?;
let serial = scsi_ascii_to_string(&serial);
(Some(serial), None, None)
}
(2, 1) => {
if dvcid.identifier_len != 34 {
bail!("got wrong DVCID length");
}
let vendor = reader.read_exact_allocated(8)?;
let vendor = scsi_ascii_to_string(&vendor);
let model = reader.read_exact_allocated(16)?;
let model = scsi_ascii_to_string(&model);
let serial = reader.read_exact_allocated(10)?;
let serial = scsi_ascii_to_string(&serial);
(Some(serial), Some(vendor), Some(model))
}
_ => (None, None, None),
};
Ok(DvcidInfo {
vendor,
model,
serial,
})
}
fn decode_element_status_page(
data: &[u8],
start_element_address: u16,
) -> Result<DecodedStatusPage, Error> {
proxmox::try_block!({
let mut result = DecodedStatusPage {
last_element_address: None,
transports: Vec::new(),
drives: Vec::new(),
storage_slots: Vec::new(),
import_export_slots: Vec::new(),
};
let mut reader = &data[..];
let head: ElementStatusHeader = unsafe { reader.read_be_value()? };
if head.number_of_elements_available == 0 {
return Ok(result);
}
if head.first_element_address_reported < start_element_address {
bail!("got wrong first_element_address_reported"); // sanity check
}
let len = head.byte_count_of_report_available;
let len = ((len[0] as usize) << 16) + ((len[1] as usize) << 8) + (len[2] as usize);
if len < reader.len() {
reader = &reader[..len];
} else if len > reader.len() {
bail!("wrong amount of data: expected {}, got {}", len, reader.len());
}
loop {
if reader.is_empty() {
break;
}
let subhead: SubHeader = unsafe { reader.read_be_value()? };
let len = subhead.byte_count_of_descriptor_data_available;
let mut len = ((len[0] as usize) << 16) + ((len[1] as usize) << 8) + (len[2] as usize);
if len > reader.len() {
len = reader.len();
}
let descr_data = reader.read_exact_allocated(len)?;
let descr_len = subhead.descriptor_length as usize;
if descr_len == 0 {
bail!("got elements, but descriptor length 0");
}
for descriptor in descr_data.chunks_exact(descr_len) {
let mut reader = &descriptor[..];
match subhead.element_type_code {
1 => {
let desc: TransportDescriptor = unsafe { reader.read_be_value()? };
let full = (desc.flags1 & 1) != 0;
let volume_tag = subhead.parse_optional_volume_tag(&mut reader, full)?;
subhead.skip_alternate_volume_tag(&mut reader)?;
result.last_element_address = Some(desc.element_address);
let status = TransportElementStatus {
status: create_element_status(full, volume_tag),
element_address: desc.element_address,
};
result.transports.push(status);
}
2 | 3 => {
let desc: StorageDescriptor = unsafe { reader.read_be_value()? };
let full = (desc.flags1 & 1) != 0;
let volume_tag = subhead.parse_optional_volume_tag(&mut reader, full)?;
subhead.skip_alternate_volume_tag(&mut reader)?;
result.last_element_address = Some(desc.element_address);
if subhead.element_type_code == 3 {
let status = StorageElementStatus {
import_export: true,
status: create_element_status(full, volume_tag),
element_address: desc.element_address,
};
result.import_export_slots.push(status);
} else {
let status = StorageElementStatus {
import_export: false,
status: create_element_status(full, volume_tag),
element_address: desc.element_address,
};
result.storage_slots.push(status);
}
}
4 => {
let desc: TransferDescriptor = unsafe { reader.read_be_value()? };
let loaded_slot = if (desc.flags2 & 128) != 0 { // SValid
Some(desc.source_storage_element_address as u64)
} else {
None
};
let full = (desc.flags1 & 1) != 0;
let volume_tag = subhead.parse_optional_volume_tag(&mut reader, full)?;
subhead.skip_alternate_volume_tag(&mut reader)?;
let dvcid = decode_dvcid_info(&mut reader).unwrap_or(DvcidInfo {
vendor: None,
model: None,
serial: None,
});
result.last_element_address = Some(desc.element_address);
let drive = DriveStatus {
loaded_slot,
status: create_element_status(full, volume_tag),
drive_serial_number: dvcid.serial,
vendor: dvcid.vendor,
model: dvcid.model,
element_address: desc.element_address,
};
result.drives.push(drive);
}
code => bail!("got unknown element type code {}", code),
}
}
}
Ok(result)
}).map_err(|err: Error| format_err!("decode element status failed - {}", err))
}
/// Open the device for read/write, returns the file handle
pub fn open<P: AsRef<Path>>(path: P) -> Result<File, Error> {
let file = OpenOptions::new()
.read(true)
.write(true)
.open(path)?;
Ok(file)
}
#[cfg(test)]
mod test {
use anyhow::Error;
use super::*;
struct StorageDesc {
address: u16,
pvoltag: Option<String>,
}
fn build_element_status_page(
descriptors: Vec<StorageDesc>,
trailing: &[u8],
element_type: u8,
) -> Vec<u8> {
let descs: Vec<Vec<u8>> = descriptors.iter().map(|desc| {
build_storage_descriptor(&desc, trailing)
}).collect();
let (desc_len, address) = if let Some(el) = descs.get(0) {
(el.len() as u16, descriptors[0].address)
} else {
(0u16, 0u16)
};
let descriptor_byte_count = desc_len * descs.len() as u16;
let byte_count = 8 + descriptor_byte_count;
let mut res = Vec::new();
res.extend_from_slice(&address.to_be_bytes());
res.extend_from_slice(&(descs.len() as u16).to_be_bytes());
res.push(0);
let byte_count = byte_count as u32;
res.extend_from_slice(&byte_count.to_be_bytes()[1..]);
res.push(element_type);
res.push(0x80);
res.extend_from_slice(&desc_len.to_be_bytes());
res.push(0);
let descriptor_byte_count = descriptor_byte_count as u32;
res.extend_from_slice(&descriptor_byte_count.to_be_bytes()[1..]);
for desc in descs {
res.extend_from_slice(&desc);
}
res.extend_from_slice(trailing);
res
}
fn build_storage_descriptor(
desc: &StorageDesc,
trailing: &[u8],
) -> Vec<u8> {
let mut res = Vec::new();
res.push(((desc.address >> 8) & 0xFF) as u8);
res.push((desc.address & 0xFF) as u8);
if desc.pvoltag.is_some() {
res.push(0x01); // full
} else {
res.push(0x00); // full
}
res.extend_from_slice(&[0,0,0,0,0,0,0x80]);
res.push(((desc.address >> 8) & 0xFF) as u8);
res.push((desc.address & 0xFF) as u8);
if let Some(voltag) = &desc.pvoltag {
res.extend_from_slice(voltag.as_bytes());
let rem = SCSI_VOLUME_TAG_LEN - voltag.as_bytes().len();
if rem > 0 {
res.resize(res.len() + rem, 0);
}
}
res.extend_from_slice(trailing);
res
}
#[test]
fn status_page_valid() -> Result<(), Error> {
let descs = vec![
StorageDesc {
address: 0,
pvoltag: Some("0123456789".to_string()),
},
StorageDesc {
address: 1,
pvoltag: Some("1234567890".to_string()),
},
];
let test_data = build_element_status_page(descs, &[], 0x2);
let page = decode_element_status_page(&test_data, 0)?;
assert_eq!(page.storage_slots.len(), 2);
Ok(())
}
#[test]
fn status_page_too_short() -> Result<(), Error> {
let descs = vec![
StorageDesc {
address: 0,
pvoltag: Some("0123456789".to_string()),
},
StorageDesc {
address: 1,
pvoltag: Some("1234567890".to_string()),
},
];
let test_data = build_element_status_page(descs, &[], 0x2);
let len = test_data.len();
let res = decode_element_status_page(&test_data[..(len - 10)], 0);
assert!(res.is_err());
Ok(())
}
#[test]
fn status_page_too_large() -> Result<(), Error> {
let descs = vec![
StorageDesc {
address: 0,
pvoltag: Some("0123456789".to_string()),
},
StorageDesc {
address: 1,
pvoltag: Some("1234567890".to_string()),
},
];
let test_data = build_element_status_page(descs, &[0,0,0,0,0], 0x2);
let page = decode_element_status_page(&test_data, 0)?;
assert_eq!(page.storage_slots.len(), 2);
Ok(())
}
}

990
pbs-tape/src/sg_tape.rs Normal file
View File

@ -0,0 +1,990 @@
use std::time::SystemTime;
use std::fs::{File, OpenOptions};
use std::os::unix::fs::OpenOptionsExt;
use std::os::unix::io::AsRawFd;
use std::path::Path;
use std::convert::TryFrom;
use std::convert::TryInto;
use anyhow::{bail, format_err, Error};
use endian_trait::Endian;
use nix::fcntl::{fcntl, FcntlArg, OFlag};
mod encryption;
pub use encryption::*;
mod volume_statistics;
pub use volume_statistics::*;
mod tape_alert_flags;
pub use tape_alert_flags::*;
mod mam;
pub use mam::*;
mod report_density;
pub use report_density::*;
use proxmox::{
sys::error::SysResult,
tools::io::{ReadExt, WriteExt},
};
use pbs_api_types::{MamAttribute, Lp17VolumeStatistics, LtoDriveAndMediaStatus};
use crate::{
BlockRead,
BlockReadError,
BlockWrite,
BlockedWriter,
BlockedReader,
sgutils2::{
SgRaw,
SenseInfo,
ScsiError,
InquiryInfo,
ModeParameterHeader,
ModeBlockDescriptor,
alloc_page_aligned_buffer,
scsi_inquiry,
scsi_mode_sense,
scsi_request_sense,
},
};
#[repr(C, packed)]
#[derive(Endian, Debug, Copy, Clone)]
pub struct ReadPositionLongPage {
flags: u8,
reserved: [u8;3],
partition_number: u32,
pub logical_object_number: u64,
pub logical_file_id: u64,
obsolete: [u8;8],
}
#[repr(C, packed)]
#[derive(Endian, Debug, Copy, Clone)]
struct DataCompressionModePage {
page_code: u8, // 0x0f
page_length: u8, // 0x0e
flags2: u8,
flags3: u8,
compression_algorithm: u32,
decompression_algorithm: u32,
reserved: [u8;4],
}
impl DataCompressionModePage {
pub fn set_compression(&mut self, enable: bool) {
if enable {
self.flags2 |= 128;
} else {
self.flags2 = self.flags2 & 127;
}
}
pub fn compression_enabled(&self) -> bool {
(self.flags2 & 0b1000_0000) != 0
}
}
#[repr(C, packed)]
#[derive(Endian)]
struct MediumConfigurationModePage {
page_code: u8, // 0x1d
page_length: u8, // 0x1e
flags2: u8,
reserved: [u8;29],
}
impl MediumConfigurationModePage {
pub fn is_worm(&self) -> bool {
(self.flags2 & 1) == 1
}
}
#[derive(Debug)]
pub struct LtoTapeStatus {
pub block_length: u32,
pub density_code: u8,
pub buffer_mode: u8,
pub write_protect: bool,
pub compression: bool,
}
pub struct SgTape {
file: File,
locate_offset: Option<i64>,
info: InquiryInfo,
encryption_key_loaded: bool,
}
impl SgTape {
const SCSI_TAPE_DEFAULT_TIMEOUT: usize = 60*10; // 10 minutes
/// Create a new instance
///
/// Uses scsi_inquiry to check the device type.
pub fn new(mut file: File) -> Result<Self, Error> {
let info = scsi_inquiry(&mut file)?;
if info.peripheral_type != 1 {
bail!("not a tape device (peripheral_type = {})", info.peripheral_type);
}
Ok(Self {
file,
info,
encryption_key_loaded: false,
locate_offset: None,
})
}
/// Access to file descriptor - useful for testing
pub fn file_mut(&mut self) -> &mut File {
&mut self.file
}
pub fn info(&self) -> &InquiryInfo {
&self.info
}
/// Return the maximum supported density code
///
/// This can be used to detect the drive generation.
pub fn max_density_code(&mut self) -> Result<u8, Error> {
report_density(&mut self.file)
}
pub fn open<P: AsRef<Path>>(path: P) -> Result<SgTape, Error> {
// do not wait for media, use O_NONBLOCK
let file = OpenOptions::new()
.read(true)
.write(true)
.custom_flags(libc::O_NONBLOCK)
.open(path)?;
// then clear O_NONBLOCK
let flags = fcntl(file.as_raw_fd(), FcntlArg::F_GETFL)
.into_io_result()?;
let mut flags = OFlag::from_bits_truncate(flags);
flags.remove(OFlag::O_NONBLOCK);
fcntl(file.as_raw_fd(), FcntlArg::F_SETFL(flags))
.into_io_result()?;
Self::new(file)
}
pub fn inquiry(&mut self) -> Result<InquiryInfo, Error> {
scsi_inquiry(&mut self.file)
}
/// Erase medium.
///
/// EOD is written at the current position, which marks it as end
/// of data. After the command is successfully completed, the
/// drive is positioned immediately before End Of Data (not End Of
/// Tape).
pub fn erase_media(&mut self, fast: bool) -> Result<(), Error> {
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.push(0x19);
if fast {
cmd.push(0); // LONG=0
} else {
cmd.push(1); // LONG=1
}
cmd.extend(&[0, 0, 0, 0]);
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("erase failed - {}", err))?;
Ok(())
}
/// Format media, single partition
pub fn format_media(&mut self, fast: bool) -> Result<(), Error> {
// try to get info about loaded media first
let (has_format, is_worm) = match self.read_medium_configuration_page() {
Ok((_head, block_descriptor, page)) => {
// FORMAT requires LTO5 or newer
let has_format = block_descriptor.density_code >= 0x58;
let is_worm = page.is_worm();
(has_format, is_worm)
}
Err(_) => {
// LTO3 and older do not supprt medium configuration mode page
(false, false)
}
};
if is_worm {
// We cannot FORMAT WORM media! Instead we check if its empty.
self.move_to_eom(false)?;
let pos = self.position()?;
if pos.logical_object_number != 0 {
bail!("format failed - detected WORM media with data.");
}
Ok(())
} else {
self.rewind()?;
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
if has_format {
cmd.extend(&[0x04, 0, 0, 0, 0, 0]); // FORMAT
sg_raw.do_command(&cmd)?;
if !fast {
self.erase_media(false)?; // overwrite everything
}
} else {
// try rewind/erase instead
self.erase_media(fast)?
}
Ok(())
}
}
/// Lock/Unlock drive door
pub fn set_medium_removal(&mut self, allow: bool) -> Result<(), ScsiError> {
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.extend(&[0x1E, 0, 0, 0]);
if allow {
cmd.push(0);
} else {
cmd.push(1);
}
cmd.push(0); // control
sg_raw.do_command(&cmd)?;
Ok(())
}
pub fn rewind(&mut self) -> Result<(), Error> {
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.extend(&[0x01, 0, 0, 0, 0, 0]); // REWIND
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("rewind failed - {}", err))?;
Ok(())
}
pub fn locate_file(&mut self, position: u64) -> Result<(), Error> {
if position == 0 {
return self.rewind();
}
const SPACE_ONE_FILEMARK: &[u8] = &[0x11, 0x01, 0, 0, 1, 0];
// Special case for position 1, because LOCATE 0 does not work
if position == 1 {
self.rewind()?;
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
sg_raw.do_command(SPACE_ONE_FILEMARK)
.map_err(|err| format_err!("locate file {} (space) failed - {}", position, err))?;
return Ok(());
}
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
// Note: LOCATE(16) works for LTO4 or newer
//
// It seems the LOCATE command behaves slightly different across vendors
// e.g. for IBM drives, LOCATE 1 moves to File #2, but
// for HP drives, LOCATE 1 move to File #1
let fixed_position = if let Some(locate_offset) = self.locate_offset {
if locate_offset < 0 {
position.saturating_sub((-locate_offset) as u64)
} else {
position.saturating_add(locate_offset as u64)
}
} else {
position
};
// always sub(1), so that it works for IBM drives without locate_offset
let fixed_position = fixed_position.saturating_sub(1);
let mut cmd = Vec::new();
cmd.extend(&[0x92, 0b000_01_000, 0, 0]); // LOCATE(16) filemarks
cmd.extend(&fixed_position.to_be_bytes());
cmd.extend(&[0, 0, 0, 0]);
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("locate file {} failed - {}", position, err))?;
// LOCATE always position at the BOT side of the filemark, so
// we need to move to other side of filemark
sg_raw.do_command(SPACE_ONE_FILEMARK)
.map_err(|err| format_err!("locate file {} (space) failed - {}", position, err))?;
if self.locate_offset.is_none() {
// check if we landed at correct position
let current_file = self.current_file_number()?;
if current_file != position {
let offset: i64 =
i64::try_from((position as i128) - (current_file as i128)).map_err(|err| {
format_err!(
"locate_file: offset between {} and {} invalid: {}",
position,
current_file,
err
)
})?;
self.locate_offset = Some(offset);
self.locate_file(position)?;
let current_file = self.current_file_number()?;
if current_file != position {
bail!("locate_file: compensating offset did not work, aborting...");
}
} else {
self.locate_offset = Some(0);
}
}
Ok(())
}
pub fn position(&mut self) -> Result<ReadPositionLongPage, Error> {
let expected_size = std::mem::size_of::<ReadPositionLongPage>();
let mut sg_raw = SgRaw::new(&mut self.file, 32)?;
sg_raw.set_timeout(30); // use short timeout
let mut cmd = Vec::new();
// READ POSITION LONG FORM works on LTO4 or newer (with recent
// firmware), although it is missing in the IBM LTO4 SSCI
// reference manual.
cmd.extend(&[0x34, 0x06, 0, 0, 0, 0, 0, 0, 0, 0]); // READ POSITION LONG FORM
let data = sg_raw.do_command(&cmd)
.map_err(|err| format_err!("read position failed - {}", err))?;
let page = proxmox::try_block!({
if data.len() != expected_size {
bail!("got unexpected data len ({} != {}", data.len(), expected_size);
}
let mut reader = &data[..];
let page: ReadPositionLongPage = unsafe { reader.read_be_value()? };
Ok(page)
}).map_err(|err: Error| format_err!("decode position page failed - {}", err))?;
if page.partition_number != 0 {
bail!("detecthed partitioned tape - not supported");
}
Ok(page)
}
pub fn current_file_number(&mut self) -> Result<u64, Error> {
let position = self.position()?;
Ok(position.logical_file_id)
}
/// Check if we are positioned after a filemark (or BOT)
pub fn check_filemark(&mut self) -> Result<bool, Error> {
let pos = self.position()?;
if pos.logical_object_number == 0 {
// at BOT, Ok (no filemark required)
return Ok(true);
}
// Note: SPACE blocks returns Err at filemark
match self.space(-1, true) {
Ok(_) => {
self.space(1, true) // move back to end
.map_err(|err| format_err!("check_filemark failed (space forward) - {}", err))?;
Ok(false)
}
Err(ScsiError::Sense(SenseInfo { sense_key: 0, asc: 0, ascq: 1 })) => {
// Filemark detected - good
self.space(1, false) // move to EOT side of filemark
.map_err(|err| format_err!("check_filemark failed (move to EOT side of filemark) - {}", err))?;
Ok(true)
}
Err(err) => {
bail!("check_filemark failed - {:?}", err);
}
}
}
pub fn move_to_eom(&mut self, write_missing_eof: bool) -> Result<(), Error> {
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.extend(&[0x11, 0x03, 0, 0, 0, 0]); // SPACE(6) move to EOD
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("move to EOD failed - {}", err))?;
if write_missing_eof {
if !self.check_filemark()? {
self.write_filemarks(1, false)?;
}
}
Ok(())
}
fn space(&mut self, count: isize, blocks: bool) -> Result<(), ScsiError> {
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
// Use short command if possible (supported by all drives)
if (count <= 0x7fffff) && (count > -0x7fffff) {
cmd.push(0x11); // SPACE(6)
if blocks {
cmd.push(0); // blocks
} else {
cmd.push(1); // filemarks
}
cmd.push(((count >> 16) & 0xff) as u8);
cmd.push(((count >> 8) & 0xff) as u8);
cmd.push((count & 0xff) as u8);
cmd.push(0); //control byte
} else {
cmd.push(0x91); // SPACE(16)
if blocks {
cmd.push(0); // blocks
} else {
cmd.push(1); // filemarks
}
cmd.extend(&[0, 0]); // reserved
let count: i64 = count as i64;
cmd.extend(&count.to_be_bytes());
cmd.extend(&[0, 0, 0, 0]); // reserved
}
sg_raw.do_command(&cmd)?;
Ok(())
}
pub fn space_filemarks(&mut self, count: isize) -> Result<(), Error> {
self.space(count, false)
.map_err(|err| format_err!("space filemarks failed - {}", err))
}
pub fn space_blocks(&mut self, count: isize) -> Result<(), Error> {
self.space(count, true)
.map_err(|err| format_err!("space blocks failed - {}", err))
}
pub fn eject(&mut self) -> Result<(), Error> {
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.extend(&[0x1B, 0, 0, 0, 0, 0]); // LODA/UNLOAD HOLD=0, LOAD=0
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("eject failed - {}", err))?;
Ok(())
}
pub fn load(&mut self) -> Result<(), Error> {
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.extend(&[0x1B, 0, 0, 0, 0b0000_0001, 0]); // LODA/UNLOAD HOLD=0, LOAD=1
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("load media failed - {}", err))?;
Ok(())
}
pub fn write_filemarks(
&mut self,
count: usize,
immediate: bool,
) -> Result<(), std::io::Error> {
if count > 255 {
proxmox::io_bail!("write_filemarks failed: got strange count '{}'", count);
}
let mut sg_raw = SgRaw::new(&mut self.file, 16)
.map_err(|err| proxmox::io_format_err!("write_filemarks failed (alloc) - {}", err))?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.push(0x10);
if immediate {
cmd.push(1); // IMMED=1
} else {
cmd.push(0); // IMMED=0
}
cmd.extend(&[0, 0, count as u8]); // COUNT
cmd.push(0); // control byte
match sg_raw.do_command(&cmd) {
Ok(_) => { /* OK */ }
Err(ScsiError::Sense(SenseInfo { sense_key: 0, asc: 0, ascq: 2 })) => {
/* LEOM - ignore */
}
Err(err) => {
proxmox::io_bail!("write filemark failed - {}", err);
}
}
Ok(())
}
// Flush tape buffers (WEOF with count 0 => flush)
pub fn sync(&mut self) -> Result<(), std::io::Error> {
self.write_filemarks(0, false)?;
Ok(())
}
pub fn test_unit_ready(&mut self) -> Result<(), Error> {
let mut sg_raw = SgRaw::new(&mut self.file, 16)?;
sg_raw.set_timeout(30); // use short timeout
let mut cmd = Vec::new();
cmd.extend(&[0x00, 0, 0, 0, 0, 0]); // TEST UNIT READY
match sg_raw.do_command(&cmd) {
Ok(_) => Ok(()),
Err(err) => {
bail!("test_unit_ready failed - {}", err);
}
}
}
pub fn wait_until_ready(&mut self) -> Result<(), Error> {
let start = SystemTime::now();
let max_wait = std::time::Duration::new(Self::SCSI_TAPE_DEFAULT_TIMEOUT as u64, 0);
loop {
match self.test_unit_ready() {
Ok(()) => return Ok(()),
_ => {
std::thread::sleep(std::time::Duration::new(1, 0));
if start.elapsed()? > max_wait {
bail!("wait_until_ready failed - got timeout");
}
}
}
}
}
/// Read Tape Alert Flags
pub fn tape_alert_flags(&mut self) -> Result<TapeAlertFlags, Error> {
read_tape_alert_flags(&mut self.file)
}
/// Read Cartridge Memory (MAM Attributes)
pub fn cartridge_memory(&mut self) -> Result<Vec<MamAttribute>, Error> {
read_mam_attributes(&mut self.file)
}
/// Read Volume Statistics
pub fn volume_statistics(&mut self) -> Result<Lp17VolumeStatistics, Error> {
return read_volume_statistics(&mut self.file);
}
pub fn set_encryption(
&mut self,
key: Option<[u8; 32]>,
) -> Result<(), Error> {
self.encryption_key_loaded = key.is_some();
set_encryption(&mut self.file, key)
}
// Note: use alloc_page_aligned_buffer to alloc data transfer buffer
//
// Returns true if the drive reached the Logical End Of Media (early warning)
fn write_block(&mut self, data: &[u8]) -> Result<bool, std::io::Error> {
let transfer_len = data.len();
if transfer_len > 0x800000 {
proxmox::io_bail!("write failed - data too large");
}
let mut sg_raw = SgRaw::new(&mut self.file, 0)
.unwrap(); // cannot fail with size 0
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.push(0x0A); // WRITE
cmd.push(0x00); // VARIABLE SIZED BLOCKS
cmd.push(((transfer_len >> 16) & 0xff) as u8);
cmd.push(((transfer_len >> 8) & 0xff) as u8);
cmd.push((transfer_len & 0xff) as u8);
cmd.push(0); // control byte
//println!("WRITE {:?}", cmd);
//println!("WRITE {:?}", data);
match sg_raw.do_out_command(&cmd, data) {
Ok(()) => { return Ok(false) }
Err(ScsiError::Sense(SenseInfo { sense_key: 0, asc: 0, ascq: 2 })) => {
return Ok(true); // LEOM
}
Err(err) => {
proxmox::io_bail!("write failed - {}", err);
}
}
}
fn read_block(&mut self, buffer: &mut [u8]) -> Result<usize, BlockReadError> {
let transfer_len = buffer.len();
if transfer_len > 0xFFFFFF {
return Err(BlockReadError::Error(
proxmox::io_format_err!("read failed - buffer too large")
));
}
let mut sg_raw = SgRaw::new(&mut self.file, 0)
.unwrap(); // cannot fail with size 0
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
let mut cmd = Vec::new();
cmd.push(0x08); // READ
cmd.push(0x02); // VARIABLE SIZED BLOCKS, SILI=1
//cmd.push(0x00); // VARIABLE SIZED BLOCKS, SILI=0
cmd.push(((transfer_len >> 16) & 0xff) as u8);
cmd.push(((transfer_len >> 8) & 0xff) as u8);
cmd.push((transfer_len & 0xff) as u8);
cmd.push(0); // control byte
let data = match sg_raw.do_in_command(&cmd, buffer) {
Ok(data) => data,
Err(ScsiError::Sense(SenseInfo { sense_key: 0, asc: 0, ascq: 1 })) => {
return Err(BlockReadError::EndOfFile);
}
Err(ScsiError::Sense(SenseInfo { sense_key: 8, asc: 0, ascq: 5 })) => {
return Err(BlockReadError::EndOfStream);
}
Err(err) => {
return Err(BlockReadError::Error(
proxmox::io_format_err!("read failed - {}", err)
));
}
};
if data.len() != transfer_len {
return Err(BlockReadError::Error(
proxmox::io_format_err!("read failed - unexpected block len ({} != {})", data.len(), buffer.len())
));
}
Ok(transfer_len)
}
pub fn open_writer(&mut self) -> BlockedWriter<SgTapeWriter> {
let writer = SgTapeWriter::new(self);
BlockedWriter::new(writer)
}
pub fn open_reader(&mut self) -> Result<BlockedReader<SgTapeReader>, BlockReadError> {
let reader = SgTapeReader::new(self);
BlockedReader::open(reader)
}
/// Set all options we need/want
pub fn set_default_options(&mut self) -> Result<(), Error> {
let compression = Some(true);
let block_length = Some(0); // variable length mode
let buffer_mode = Some(true); // Always use drive buffer
self.set_drive_options(compression, block_length, buffer_mode)?;
Ok(())
}
/// Set important drive options
pub fn set_drive_options(
&mut self,
compression: Option<bool>,
block_length: Option<u32>,
buffer_mode: Option<bool>,
) -> Result<(), Error> {
// Note: Read/Modify/Write
let (mut head, mut block_descriptor, mut page) = self.read_compression_page()?;
let mut sg_raw = SgRaw::new(&mut self.file, 0)?;
sg_raw.set_timeout(Self::SCSI_TAPE_DEFAULT_TIMEOUT);
head.mode_data_len = 0; // need to b e zero
if let Some(compression) = compression {
page.set_compression(compression);
}
if let Some(block_length) = block_length {
block_descriptor.set_block_length(block_length)?;
}
if let Some(buffer_mode) = buffer_mode {
head.set_buffer_mode(buffer_mode);
}
let mut data = Vec::new();
unsafe {
data.write_be_value(head)?;
data.write_be_value(block_descriptor)?;
data.write_be_value(page)?;
}
let mut cmd = Vec::new();
cmd.push(0x55); // MODE SELECT(10)
cmd.push(0b0001_0000); // PF=1
cmd.extend(&[0,0,0,0,0]); //reserved
let param_list_len: u16 = data.len() as u16;
cmd.extend(&param_list_len.to_be_bytes());
cmd.push(0); // control
let mut buffer = alloc_page_aligned_buffer(4096)?;
buffer[..data.len()].copy_from_slice(&data[..]);
sg_raw.do_out_command(&cmd, &buffer[..data.len()])
.map_err(|err| format_err!("set drive options failed - {}", err))?;
Ok(())
}
fn read_medium_configuration_page(
&mut self,
) -> Result<(ModeParameterHeader, ModeBlockDescriptor, MediumConfigurationModePage), Error> {
let (head, block_descriptor, page): (_,_, MediumConfigurationModePage)
= scsi_mode_sense(&mut self.file, false, 0x1d, 0)?;
proxmox::try_block!({
if (page.page_code & 0b0011_1111) != 0x1d {
bail!("wrong page code {}", page.page_code);
}
if page.page_length != 0x1e {
bail!("wrong page length {}", page.page_length);
}
let block_descriptor = match block_descriptor {
Some(block_descriptor) => block_descriptor,
None => bail!("missing block descriptor"),
};
Ok((head, block_descriptor, page))
}).map_err(|err| format_err!("read_medium_configuration failed - {}", err))
}
fn read_compression_page(
&mut self,
) -> Result<(ModeParameterHeader, ModeBlockDescriptor, DataCompressionModePage), Error> {
let (head, block_descriptor, page): (_,_, DataCompressionModePage)
= scsi_mode_sense(&mut self.file, false, 0x0f, 0)?;
proxmox::try_block!({
if (page.page_code & 0b0011_1111) != 0x0f {
bail!("wrong page code {}", page.page_code);
}
if page.page_length != 0x0e {
bail!("wrong page length {}", page.page_length);
}
let block_descriptor = match block_descriptor {
Some(block_descriptor) => block_descriptor,
None => bail!("missing block descriptor"),
};
Ok((head, block_descriptor, page))
}).map_err(|err| format_err!("read_compression_page failed: {}", err))
}
/// Read drive options/status
///
/// We read the drive compression page, including the
/// block_descriptor. This is all information we need for now.
pub fn read_drive_status(&mut self) -> Result<LtoTapeStatus, Error> {
// We do a Request Sense, but ignore the result.
// This clears deferred error or media changed events.
let _ = scsi_request_sense(&mut self.file);
let (head, block_descriptor, page) = self.read_compression_page()?;
Ok(LtoTapeStatus {
block_length: block_descriptor.block_length(),
write_protect: head.write_protect(),
buffer_mode: head.buffer_mode(),
compression: page.compression_enabled(),
density_code: block_descriptor.density_code,
})
}
/// Get Tape and Media status
pub fn get_drive_and_media_status(&mut self) -> Result<LtoDriveAndMediaStatus, Error> {
let drive_status = self.read_drive_status()?;
let alert_flags = self.tape_alert_flags()
.map(|flags| format!("{:?}", flags))
.ok();
let mut status = LtoDriveAndMediaStatus {
vendor: self.info().vendor.clone(),
product: self.info().product.clone(),
revision: self.info().revision.clone(),
blocksize: drive_status.block_length,
compression: drive_status.compression,
buffer_mode: drive_status.buffer_mode,
density: drive_status.density_code.try_into()?,
alert_flags,
write_protect: None,
file_number: None,
block_number: None,
manufactured: None,
bytes_read: None,
bytes_written: None,
medium_passes: None,
medium_wearout: None,
volume_mounts: None,
};
if self.test_unit_ready().is_ok() {
if drive_status.write_protect {
status.write_protect = Some(drive_status.write_protect);
}
let position = self.position()?;
status.file_number = Some(position.logical_file_id);
status.block_number = Some(position.logical_object_number);
if let Ok(mam) = self.cartridge_memory() {
let usage = mam_extract_media_usage(&mam)?;
status.manufactured = Some(usage.manufactured);
status.bytes_read = Some(usage.bytes_read);
status.bytes_written = Some(usage.bytes_written);
if let Ok(volume_stats) = self.volume_statistics() {
let passes = std::cmp::max(
volume_stats.beginning_of_medium_passes,
volume_stats.middle_of_tape_passes,
);
// assume max. 16000 medium passes
// see: https://en.wikipedia.org/wiki/Linear_Tape-Open
let wearout: f64 = (passes as f64)/(16000.0 as f64);
status.medium_passes = Some(passes);
status.medium_wearout = Some(wearout);
status.volume_mounts = Some(volume_stats.volume_mounts);
}
}
}
Ok(status)
}
}
impl Drop for SgTape {
fn drop(&mut self) {
// For security reasons, clear the encryption key
if self.encryption_key_loaded {
let _ = self.set_encryption(None);
}
}
}
pub struct SgTapeReader<'a> {
sg_tape: &'a mut SgTape,
end_of_file: bool,
}
impl <'a> SgTapeReader<'a> {
pub fn new(sg_tape: &'a mut SgTape) -> Self {
Self { sg_tape, end_of_file: false, }
}
}
impl <'a> BlockRead for SgTapeReader<'a> {
fn read_block(&mut self, buffer: &mut [u8]) -> Result<usize, BlockReadError> {
if self.end_of_file {
return Err(BlockReadError::Error(proxmox::io_format_err!("detected read after EOF!")));
}
match self.sg_tape.read_block(buffer) {
Ok(usize) => Ok(usize),
Err(BlockReadError::EndOfFile) => {
self.end_of_file = true;
Err(BlockReadError::EndOfFile)
},
Err(err) => Err(err),
}
}
}
pub struct SgTapeWriter<'a> {
sg_tape: &'a mut SgTape,
_leom_sent: bool,
}
impl <'a> SgTapeWriter<'a> {
pub fn new(sg_tape: &'a mut SgTape) -> Self {
Self { sg_tape, _leom_sent: false }
}
}
impl <'a> BlockWrite for SgTapeWriter<'a> {
fn write_block(&mut self, buffer: &[u8]) -> Result<bool, std::io::Error> {
self.sg_tape.write_block(buffer)
}
fn write_filemark(&mut self) -> Result<(), std::io::Error> {
self.sg_tape.write_filemarks(1, true)
}
}

View File

@ -0,0 +1,293 @@
use std::os::unix::prelude::AsRawFd;
use std::io::Write;
use anyhow::{bail, format_err, Error};
use endian_trait::Endian;
use proxmox::tools::io::{ReadExt, WriteExt};
use crate::sgutils2::{SgRaw, alloc_page_aligned_buffer};
/// Test if drive supports hardware encryption
///
/// We search for AES_CGM algorithm with 256bits key.
pub fn has_encryption<F: AsRawFd>(
file: &mut F,
) -> bool {
let data = match sg_spin_data_encryption_caps(file) {
Ok(data) => data,
Err(_) => return false,
};
decode_spin_data_encryption_caps(&data).is_ok()
}
/// Set or clear encryption key
///
/// We always use mixed mode,
pub fn set_encryption<F: AsRawFd>(
file: &mut F,
key: Option<[u8; 32]>,
) -> Result<(), Error> {
let data = match sg_spin_data_encryption_caps(file) {
Ok(data) => data,
Err(_) if key.is_none() => {
// Assume device does not support HW encryption
// We can simply ignore the clear key request
return Ok(());
}
Err(err) => return Err(err),
};
let algorithm_index = decode_spin_data_encryption_caps(&data)?;
sg_spout_set_encryption(file, algorithm_index, key)?;
let data = sg_spin_data_encryption_status(file)?;
let status = decode_spin_data_encryption_status(&data)?;
match status.mode {
DataEncryptionMode::Off => {
if key.is_none() {
return Ok(());
}
}
DataEncryptionMode::Mixed => {
if key.is_some() {
return Ok(());
}
}
_ => {}
}
bail!("got unexpected encryption mode {:?}", status.mode);
}
#[derive(Endian)]
#[repr(C, packed)]
struct SspSetDataEncryptionPage {
page_code: u16,
page_len: u16,
scope_byte: u8,
control_byte_5: u8,
encryption_mode: u8,
decryption_mode: u8,
algorythm_index: u8,
key_format: u8,
reserved: [u8; 8],
key_len: u16,
/* key follows */
}
fn sg_spout_set_encryption<F: AsRawFd>(
file: &mut F,
algorythm_index: u8,
key: Option<[u8; 32]>,
) -> Result<(), Error> {
let mut sg_raw = SgRaw::new(file, 0)?;
let mut outbuf_len = std::mem::size_of::<SspSetDataEncryptionPage>();
if let Some(ref key) = key {
outbuf_len += key.len();
}
let mut outbuf = alloc_page_aligned_buffer(outbuf_len)?;
let chok: u8 = 0;
let page = SspSetDataEncryptionPage {
page_code: 0x10,
page_len: (outbuf_len - 4) as u16,
scope_byte: (0b10 << 5), // all IT nexus
control_byte_5: (chok << 2),
encryption_mode: if key.is_some() { 2 } else { 0 },
decryption_mode: if key.is_some() { 3 } else { 0 }, // mixed mode
algorythm_index,
key_format: 0,
reserved: [0u8; 8],
key_len: if let Some(ref key) = key { key.len() as u16 } else { 0 },
};
let mut writer = &mut outbuf[..];
unsafe { writer.write_be_value(page)? };
if let Some(ref key) = key {
writer.write_all(key)?;
}
let mut cmd = Vec::new();
cmd.push(0xB5); // SECURITY PROTOCOL IN (SPOUT)
cmd.push(0x20); // Tape Data Encryption Page
cmd.push(0);cmd.push(0x10); // Set Data Encryption page
cmd.push(0);
cmd.push(0);
cmd.extend(&(outbuf_len as u32).to_be_bytes()); // data out len
cmd.push(0);
cmd.push(0);
sg_raw.do_out_command(&cmd, &outbuf)
.map_err(|err| format_err!("set data encryption SPOUT(20h[0010h]) failed - {}", err))
}
// Warning: this blocks and fails if there is no media loaded
fn sg_spin_data_encryption_status<F: AsRawFd>(file: &mut F) -> Result<Vec<u8>, Error> {
let allocation_len: u32 = 8192+4;
let mut sg_raw = SgRaw::new(file, allocation_len as usize)?;
let mut cmd = Vec::new();
cmd.push(0xA2); // SECURITY PROTOCOL IN (SPIN)
cmd.push(0x20); // Tape Data Encryption Page
cmd.push(0);cmd.push(0x20); // Data Encryption Status page
cmd.push(0);
cmd.push(0);
cmd.extend(&allocation_len.to_be_bytes());
cmd.push(0);
cmd.push(0);
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("read data encryption status SPIN(20h[0020h]) failed - {}", err))
.map(|v| v.to_vec())
}
// Warning: this blocks and fails if there is no media loaded
fn sg_spin_data_encryption_caps<F: AsRawFd>(file: &mut F) -> Result<Vec<u8>, Error> {
let allocation_len: u32 = 8192+4;
let mut sg_raw = SgRaw::new(file, allocation_len as usize)?;
let mut cmd = Vec::new();
cmd.push(0xA2); // SECURITY PROTOCOL IN (SPIN)
cmd.push(0x20); // Tape Data Encryption Page
cmd.push(0);cmd.push(0x10); // Data Encryption Capabilities page
cmd.push(0);
cmd.push(0);
cmd.extend(&allocation_len.to_be_bytes());
cmd.push(0);
cmd.push(0);
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("read data encryption caps SPIN(20h[0010h]) failed - {}", err))
.map(|v| v.to_vec())
}
#[derive(Debug)]
enum DataEncryptionMode {
On,
Mixed,
RawRead,
Off,
}
#[derive(Debug)]
struct DataEncryptionStatus {
mode: DataEncryptionMode,
}
#[derive(Endian)]
#[repr(C, packed)]
struct SspDataEncryptionCapabilityPage {
page_code: u16,
page_len: u16,
reserved: [u8; 16],
}
#[derive(Endian)]
#[repr(C, packed)]
struct SspDataEncryptionAlgorithmDescriptor {
algorythm_index: u8,
reserved1: u8,
descriptor_len: u16,
control_byte_4: u8,
control_byte_5: u8,
max_ucad_bytes: u16,
max_acad_bytes: u16,
key_size: u16,
control_byte_12: u8,
reserved2: u8,
msdk_count: u16,
reserved3: [u8; 4],
algorithm_code: u32,
}
// Returns the algorythm_index for AES-CGM
fn decode_spin_data_encryption_caps(data: &[u8]) -> Result<u8, Error> {
proxmox::try_block!({
let mut reader = &data[..];
let _page: SspDataEncryptionCapabilityPage = unsafe { reader.read_be_value()? };
let mut aes_cgm_index = None;
loop {
if reader.is_empty() { break; };
let desc: SspDataEncryptionAlgorithmDescriptor =
unsafe { reader.read_be_value()? };
if desc.descriptor_len != 0x14 {
bail!("got wrong key descriptor len");
}
if (desc.control_byte_4 & 0b00000011) != 2 {
continue; // can't encrypt in hardware
}
if ((desc.control_byte_4 & 0b00001100) >> 2) != 2 {
continue; // can't decrypt in hardware
}
if desc.algorithm_code == 0x00010014 && desc.key_size == 32 {
aes_cgm_index = Some(desc.algorythm_index);
break;
}
}
match aes_cgm_index {
Some(index) => Ok(index),
None => bail!("drive does not support AES-CGM encryption"),
}
}).map_err(|err: Error| format_err!("decode data encryption caps page failed - {}", err))
}
#[derive(Endian)]
#[repr(C, packed)]
struct SspDataEncryptionStatusPage {
page_code: u16,
page_len: u16,
scope_byte: u8,
encryption_mode: u8,
decryption_mode: u8,
algorythm_index: u8,
key_instance_counter: u32,
control_byte: u8,
key_format: u8,
key_len: u16,
reserved: [u8; 8],
}
fn decode_spin_data_encryption_status(data: &[u8]) -> Result<DataEncryptionStatus, Error> {
proxmox::try_block!({
let mut reader = &data[..];
let page: SspDataEncryptionStatusPage = unsafe { reader.read_be_value()? };
if page.page_code != 0x20 {
bail!("invalid response");
}
let mode = match (page.encryption_mode, page.decryption_mode) {
(0, 0) => DataEncryptionMode::Off,
(2, 1) => DataEncryptionMode::RawRead,
(2, 2) => DataEncryptionMode::On,
(2, 3) => DataEncryptionMode::Mixed,
_ => bail!("unknown encryption mode"),
};
let status = DataEncryptionStatus {
mode,
};
Ok(status)
}).map_err(|err| format_err!("decode data encryption status page failed - {}", err))
}

236
pbs-tape/src/sg_tape/mam.rs Normal file
View File

@ -0,0 +1,236 @@
use std::collections::HashMap;
use std::convert::TryInto;
use std::os::unix::io::AsRawFd;
use anyhow::{bail, format_err, Error};
use endian_trait::Endian;
use proxmox::tools::io::ReadExt;
use pbs_api_types::MamAttribute;
use crate::sgutils2::SgRaw;
use super::TapeAlertFlags;
// Read Medium auxiliary memory attributes (MAM)
// see IBM SCSI reference: https://www-01.ibm.com/support/docview.wss?uid=ssg1S7003556&aid=1
#[derive(Endian)]
#[repr(C,packed)]
struct MamAttributeHeader {
id: u16,
flags: u8,
len: u16,
}
enum MamFormat {
BINARY,
ASCII,
DEC,
}
static MAM_ATTRIBUTES: &[ (u16, u16, MamFormat, &str) ] = &[
(0x00_00, 8, MamFormat::DEC, "Remaining Capacity In Partition"),
(0x00_01, 8, MamFormat::DEC, "Maximum Capacity In Partition"),
(0x00_02, 8, MamFormat::DEC, "Tapealert Flags"),
(0x00_03, 8, MamFormat::DEC, "Load Count"),
(0x00_04, 8, MamFormat::DEC, "MAM Space Remaining"),
(0x00_05, 8, MamFormat::ASCII, "Assigning Organization"),
(0x00_06, 1, MamFormat::BINARY, "Formatted Density Code"),
(0x00_07, 2, MamFormat::DEC, "Initialization Count"),
(0x00_09, 4, MamFormat::BINARY, "Volume Change Reference"),
(0x02_0A, 40, MamFormat::ASCII, "Device Vendor/Serial Number at Last Load"),
(0x02_0B, 40, MamFormat::ASCII, "Device Vendor/Serial Number at Load-1"),
(0x02_0C, 40, MamFormat::ASCII, "Device Vendor/Serial Number at Load-2"),
(0x02_0D, 40, MamFormat::ASCII, "Device Vendor/Serial Number at Load-3"),
(0x02_20, 8, MamFormat::DEC, "Total MBytes Written in Medium Life"),
(0x02_21, 8, MamFormat::DEC, "Total MBytes Read In Medium Life"),
(0x02_22, 8, MamFormat::DEC, "Total MBytes Written in Current Load"),
(0x02_23, 8, MamFormat::DEC, "Total MBytes Read in Current/Last Load"),
(0x02_24, 8, MamFormat::BINARY, "Logical Position of First Encrypted Block"),
(0x02_25, 8, MamFormat::BINARY, "Logical Position of First Unencrypted Block After the First Encrypted Block"),
(0x04_00, 8, MamFormat::ASCII, "Medium Manufacturer"),
(0x04_01, 32, MamFormat::ASCII, "Medium Serial Number"),
(0x04_02, 4, MamFormat::DEC, "Medium Length"),
(0x04_03, 4, MamFormat::DEC, "Medium Width"),
(0x04_04, 8, MamFormat::ASCII, "Assigning Organization"),
(0x04_05, 1, MamFormat::BINARY, "Medium Density Code"),
(0x04_06, 8, MamFormat::ASCII, "Medium Manufacture Date"),
(0x04_07, 8, MamFormat::DEC, "MAM Capacity"),
(0x04_08, 1, MamFormat::BINARY, "Medium Type"),
(0x04_09, 2, MamFormat::BINARY, "Medium Type Information"),
(0x04_0B, 10, MamFormat::BINARY, "Supported Density Codes"),
(0x08_00, 8, MamFormat::ASCII, "Application Vendor"),
(0x08_01, 32, MamFormat::ASCII, "Application Name"),
(0x08_02, 8, MamFormat::ASCII, "Application Version"),
(0x08_03, 160, MamFormat::ASCII, "User Medium Text Label"),
(0x08_04, 12, MamFormat::ASCII, "Date And Time Last Written"),
(0x08_05, 1, MamFormat::BINARY, "Text Localization Identifier"),
(0x08_06, 32, MamFormat::ASCII, "Barcode"),
(0x08_07, 80, MamFormat::ASCII, "Owning Host Textual Name"),
(0x08_08, 160, MamFormat::ASCII, "Media Pool"),
(0x08_0B, 16, MamFormat::ASCII, "Application Format Version"),
(0x08_0C, 50, MamFormat::ASCII, "Volume Coherency Information"),
(0x08_20, 36, MamFormat::ASCII, "Medium Globally Unique Identifier"),
(0x08_21, 36, MamFormat::ASCII, "Media Pool Globally Unique Identifier"),
(0x10_00, 28, MamFormat::BINARY, "Unique Cartridge Identify (UCI)"),
(0x10_01, 24, MamFormat::BINARY, "Alternate Unique Cartridge Identify (Alt-UCI)"),
];
lazy_static::lazy_static!{
static ref MAM_ATTRIBUTE_NAMES: HashMap<u16, &'static (u16, u16, MamFormat, &'static str)> = {
let mut map = HashMap::new();
for entry in MAM_ATTRIBUTES {
map.insert(entry.0, entry);
}
map
};
}
fn read_tape_mam<F: AsRawFd>(file: &mut F) -> Result<Vec<u8>, Error> {
let alloc_len: u32 = 32*1024;
let mut sg_raw = SgRaw::new(file, alloc_len as usize)?;
let mut cmd = Vec::new();
cmd.extend(&[0x8c, 0u8, 0u8, 0u8, 0u8, 0u8, 0u8, 0u8]);
cmd.extend(&[0u8, 0u8]); // first attribute
cmd.extend(&alloc_len.to_be_bytes()); // alloc len
cmd.extend(&[0u8, 0u8]);
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("read cartidge memory failed - {}", err))
.map(|v| v.to_vec())
}
/// Read Medium auxiliary memory attributes (cartridge memory) using raw SCSI command.
pub fn read_mam_attributes<F: AsRawFd>(file: &mut F) -> Result<Vec<MamAttribute>, Error> {
let data = read_tape_mam(file)?;
decode_mam_attributes(&data)
}
fn decode_mam_attributes(data: &[u8]) -> Result<Vec<MamAttribute>, Error> {
let mut reader = &data[..];
let data_len: u32 = unsafe { reader.read_be_value()? };
let expected_len = data_len as usize;
if reader.len() < expected_len {
bail!("read_mam_attributes: got unexpected data len ({} != {})", reader.len(), expected_len);
} else if reader.len() > expected_len {
// Note: Quantum hh7 returns the allocation_length instead of real data_len
reader = &data[4..expected_len+4];
}
let mut list = Vec::new();
loop {
if reader.is_empty() {
break;
}
let head: MamAttributeHeader = unsafe { reader.read_be_value()? };
//println!("GOT ID {:04X} {:08b} {}", head.id, head.flags, head.len);
let head_id = head.id;
let data = if head.len > 0 {
reader.read_exact_allocated(head.len as usize)?
} else {
Vec::new()
};
if let Some(info) = MAM_ATTRIBUTE_NAMES.get(&head_id) {
if info.1 == head.len {
let value = match info.2 {
MamFormat::ASCII => String::from_utf8_lossy(&data).to_string(),
MamFormat::DEC => {
if info.1 == 2 {
format!("{}", u16::from_be_bytes(data[0..2].try_into()?))
} else if info.1 == 4 {
format!("{}", u32::from_be_bytes(data[0..4].try_into()?))
} else if info.1 == 8 {
if head_id == 2 { // Tape Alert Flags
let value = u64::from_be_bytes(data[0..8].try_into()?);
let flags = TapeAlertFlags::from_bits_truncate(value);
format!("{:?}", flags)
} else {
format!("{}", u64::from_be_bytes(data[0..8].try_into()?))
}
} else {
unreachable!();
}
},
MamFormat::BINARY => proxmox::tools::digest_to_hex(&data),
};
list.push(MamAttribute {
id: head_id,
name: info.3.to_string(),
value,
});
} else {
eprintln!("read_mam_attributes: got starnge data len for id {:04X}", head_id);
}
} else {
// skip unknown IDs
}
}
Ok(list)
}
/// Media Usage Information from Cartridge Memory
pub struct MediaUsageInfo {
pub manufactured: i64,
pub bytes_read: u64,
pub bytes_written: u64,
}
/// Extract Media Usage Information from Cartridge Memory
pub fn mam_extract_media_usage(mam: &[MamAttribute]) -> Result<MediaUsageInfo, Error> {
let manufactured: i64 = match mam.iter().find(|v| v.id == 0x04_06).map(|v| v.value.clone()) {
Some(date_str) => {
if date_str.len() != 8 {
bail!("unable to parse 'Medium Manufacture Date' - wrong length");
}
let year: i32 = date_str[..4].parse()?;
let mon: i32 = date_str[4..6].parse()?;
let mday: i32 = date_str[6..8].parse()?;
use proxmox::tools::time::TmEditor;
let mut t = TmEditor::new(true);
t.set_year(year)?;
t.set_mon(mon)?;
t.set_mday(mday)?;
t.into_epoch()?
}
None => bail!("unable to read MAM 'Medium Manufacture Date'"),
};
let bytes_written: u64 = match mam.iter().find(|v| v.id == 0x02_20).map(|v| v.value.clone()) {
Some(read_str) => read_str.parse::<u64>()? * 1024*1024,
None => bail!("unable to read MAM 'Total MBytes Written In Medium Life'"),
};
let bytes_read: u64 = match mam.iter().find(|v| v.id == 0x02_21).map(|v| v.value.clone()) {
Some(read_str) => read_str.parse::<u64>()? * 1024*1024,
None => bail!("unable to read MAM 'Total MBytes Read In Medium Life'"),
};
Ok(MediaUsageInfo { manufactured, bytes_written, bytes_read })
}

View File

@ -0,0 +1,69 @@
use anyhow::{bail, format_err, Error};
use std::io::Read;
use endian_trait::Endian;
use std::os::unix::io::AsRawFd;
use proxmox::tools::io::ReadExt;
use crate::sgutils2::SgRaw;
#[repr(C, packed)]
#[derive(Endian)]
struct DesnityDescriptorBlock {
primary_density_code: u8,
secondary_density_code: u8,
flags2: u8,
reserved: [u8; 2],
bits_per_mm: [u8; 3],
media_width: u16,
tracks: u16,
capacity: u32,
organizazion: [u8; 8],
density_name: [u8; 8],
description: [u8; 20],
}
// Returns the maximum supported drive density code
pub fn report_density<F: AsRawFd>(file: &mut F) -> Result<u8, Error> {
let alloc_len: u16 = 8192;
let mut sg_raw = SgRaw::new(file, alloc_len as usize)?;
let mut cmd = Vec::new();
cmd.extend(&[0x44, 0, 0, 0, 0, 0, 0]); // REPORT DENSITY SUPPORT (MEDIA=0)
cmd.extend(&alloc_len.to_be_bytes()); // alloc len
cmd.push(0u8); // control byte
let data = sg_raw.do_command(&cmd)
.map_err(|err| format_err!("report density failed - {}", err))?;
let mut max_density = 0u8;
proxmox::try_block!({
let mut reader = &data[..];
let page_len: u16 = unsafe { reader.read_be_value()? };
let page_len = page_len as usize;
if (page_len + 2) > data.len() {
bail!("invalid page length {} {}", page_len + 2, data.len());
} else {
// Note: Quantum hh7 returns the allocation_length instead of real data_len
reader = &data[2..page_len+2];
}
let mut reserved = [0u8; 2];
reader.read_exact(&mut reserved)?;
loop {
if reader.is_empty() { break; }
let block: DesnityDescriptorBlock = unsafe { reader.read_be_value()? };
if block.primary_density_code > max_density {
max_density = block.primary_density_code;
}
}
Ok(())
}).map_err(|err| format_err!("decode report density failed - {}", err))?;
Ok(max_density)
}

View File

@ -0,0 +1,185 @@
use std::io::Read;
use std::os::unix::io::AsRawFd;
use anyhow::{bail, format_err, Error};
use proxmox::tools::io::ReadExt;
use crate::sgutils2::SgRaw;
bitflags::bitflags!{
/// Tape Alert Flags
///
/// See LTO SCSI Reference LOG_SENSE - LP 2Eh: TapeAlerts
pub struct TapeAlertFlags: u64 {
#[allow(clippy::eq_op)]
const READ_WARNING = 1 << (0x0001 -1);
const WRITE_WARNING = 1 << (0x0002 -1);
const HARD_ERROR = 1 << (0x0003 -1);
const MEDIA = 1 << (0x0004 -1);
const READ_FAILURE = 1 << (0x0005 -1);
const WRITE_FAILURE = 1 << (0x0006 -1);
const MEDIA_LIFE = 1 << (0x0007 -1);
const NOT_DATA_GRADE = 1 << (0x0008 -1);
const WRITE_PROTECT = 1 << (0x0009 -1);
const NO_REMOVAL = 1 << (0x000A -1);
const CLEANING_MEDIA = 1 << (0x000B -1);
const UNSUPPORTED_FORMAT = 1 << (0x000C -1);
const RECOVERABLE_MECHANICAL_CARTRIDGE_FAILURE = 1 << (0x000D -1); // LTO5
const UNRECOVERABLE_SNAPPED_TAPE = 1 << (0x000E -1);
const MEMORY_CHIP_IN_CARTRIDGE_FAILURE = 1 << (0x000F -1);
const FORCED_EJECT = 1 << (0x0010 -1);
const READ_ONLY_FORMAT = 1 << (0x0011 -1);
const TAPE_DIRECTORY_CORRUPTED = 1 << (0x0012 -1);
const NEARING_MEDIA_LIFE = 1 << (0x0013 -1);
const CLEAN_NOW = 1 << (0x0014 -1);
const CLEAN_PERIODIC = 1 << (0x0015 -1);
const EXPIRED_CLEANING_MEDIA = 1 << (0x0016 -1);
const INVALID_CLEANING_TAPE = 1 << (0x0017 -1);
const RETENSION_REQUEST = 1 << (0x0018 -1); // LTO5
const HOST_CHANNEL_FAILURE = 1 << (0x0019 -1);
const COOLING_FAN_FAILURE = 1 << (0x001A -1);
const POWER_SUPPLY_FAILURE = 1 << (0x001B -1);
const POWER_CONSUMPTION = 1 << (0x001C -1); // LTO5
const DRIVE_MANTAINANCE = 1 << (0x001D -1); // LTO5
const HARDWARE_A = 1 << (0x001E -1);
const HARDWARE_B = 1 << (0x001F -1);
const INTERFACE = 1 << (0x0020 -1);
const EJECT_MEDIA = 1 << (0x0021 -1);
const DOWNLOAD_FAULT = 1 << (0x0022 -1);
const DRIVE_HUMIDITY = 1 << (0x0023 -1); // LTO5
const DRIVE_TEMPERATURE = 1 << (0x0024 -1);
const DRIVE_VOLTAGE = 1 << (0x0025 -1);
const PREDICTIVE_FAILURE = 1 << (0x0026 -1);
const DIAGNOSTICS_REQUIRED = 1 << (0x0027 -1);
const LOADER_STRAY_TAPE = 1 << (0x0029 -1);
const LOADER_HARDWARE = 1 << (0x002A -1);
const LOADER_MAGAZINE = 1 << (0x002D -1);
const DIMINISHED_NATIVE_CAPACITY = 1 << (0x0031 -1);
const LOST_STATISTICS = 1 << (0x0032 -1);
const TAPE_DIRECTORY_INVALID_AT_UNLOAD = 1 << (0x0033 -1);
const TAPE_SYSTEM_AREA_WRITE_FAILURE = 1 << (0x0034 -1);
const TAPE_SYSTEM_AREA_READ_FAILURE = 1 << (0x0035 -1);
const NO_START_OF_DATA = 1 << (0x0036 -1);
const LOADING_FAILURE = 1 << (0x0037 -1);
const UNRECOVERABLE_UNLOAD_FAILURE = 1 << (0x0038 -1);
const AUTOMATION_INTERFACE_FAILURE = 1 << (0x0039 -1);
const FIRMWARE_FAILURE = 1 << (0x003A -1);
const WORM_INTEGRITY_CHECK_FAILED = 1 << (0x003B -1);
const WORM_OVERWRITE_ATTEMPTED = 1 << (0x003C -1);
const ENCRYPTION_POLICY_VIOLATION = 1 << (0x003D -1);
}
}
/// Read Tape Alert Flags using raw SCSI command.
pub fn read_tape_alert_flags<F: AsRawFd>(file: &mut F) -> Result<TapeAlertFlags, Error> {
let data = sg_read_tape_alert_flags(file)?;
decode_tape_alert_flags(&data)
}
fn sg_read_tape_alert_flags<F: AsRawFd>(file: &mut F) -> Result<Vec<u8>, Error> {
let mut sg_raw = SgRaw::new(file, 512)?;
// Note: We cannjot use LP 2Eh TapeAlerts, because that clears flags on read.
// Instead, we use LP 12h TapeAlert Response. which does not clear the flags.
let mut cmd = Vec::new();
cmd.push(0x4D); // LOG SENSE
cmd.push(0);
cmd.push((1<<6) | 0x12); // Tape Alert Response log page
cmd.push(0);
cmd.push(0);
cmd.push(0);
cmd.push(0);
cmd.extend(&[2u8, 0u8]); // alloc len
cmd.push(0u8); // control byte
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("read tape alert flags failed - {}", err))
.map(|v| v.to_vec())
}
fn decode_tape_alert_flags(data: &[u8]) -> Result<TapeAlertFlags, Error> {
proxmox::try_block!({
if !((data[0] & 0x7f) == 0x12 && data[1] == 0) {
bail!("invalid response");
}
let mut reader = &data[2..];
let page_len: u16 = unsafe { reader.read_be_value()? };
if page_len != 0x0c {
bail!("invalid page length");
}
let parameter_code: u16 = unsafe { reader.read_be_value()? };
if parameter_code != 0 {
bail!("invalid parameter code");
}
let mut control_buf = [0u8; 2];
reader.read_exact(&mut control_buf)?;
if control_buf[1] != 8 {
bail!("invalid parameter length");
}
let mut value: u64 = unsafe { reader.read_be_value()? };
// bits are in wrong order, reverse them
value = value.reverse_bits();
Ok(TapeAlertFlags::from_bits_truncate(value))
}).map_err(|err| format_err!("decode tape alert flags failed - {}", err))
}
const CRITICAL_FLAG_MASK: u64 =
TapeAlertFlags::MEDIA.bits() |
TapeAlertFlags::WRITE_FAILURE.bits() |
TapeAlertFlags::READ_FAILURE.bits() |
TapeAlertFlags::WRITE_PROTECT.bits() |
TapeAlertFlags::UNRECOVERABLE_SNAPPED_TAPE.bits() |
TapeAlertFlags::FORCED_EJECT.bits() |
TapeAlertFlags::EXPIRED_CLEANING_MEDIA.bits() |
TapeAlertFlags::INVALID_CLEANING_TAPE.bits() |
TapeAlertFlags::HARDWARE_A.bits() |
TapeAlertFlags::HARDWARE_B.bits() |
TapeAlertFlags::EJECT_MEDIA.bits() |
TapeAlertFlags::PREDICTIVE_FAILURE.bits() |
TapeAlertFlags::LOADER_STRAY_TAPE.bits() |
TapeAlertFlags::LOADER_MAGAZINE.bits() |
TapeAlertFlags::TAPE_SYSTEM_AREA_WRITE_FAILURE.bits() |
TapeAlertFlags::TAPE_SYSTEM_AREA_READ_FAILURE.bits() |
TapeAlertFlags::NO_START_OF_DATA.bits() |
TapeAlertFlags::LOADING_FAILURE.bits() |
TapeAlertFlags::UNRECOVERABLE_UNLOAD_FAILURE.bits() |
TapeAlertFlags::AUTOMATION_INTERFACE_FAILURE.bits();
/// Check if tape-alert-flags contains critial errors.
pub fn tape_alert_flags_critical(flags: TapeAlertFlags) -> bool {
(flags.bits() & CRITICAL_FLAG_MASK) != 0
}
const MEDIA_LIFE_MASK: u64 =
TapeAlertFlags::MEDIA_LIFE.bits() |
TapeAlertFlags::NEARING_MEDIA_LIFE.bits();
/// Check if tape-alert-flags indicates media-life end
pub fn tape_alert_flags_media_life(flags: TapeAlertFlags) -> bool {
(flags.bits() & MEDIA_LIFE_MASK) != 0
}
const MEDIA_CLEAN_MASK: u64 =
TapeAlertFlags::CLEAN_NOW.bits() |
TapeAlertFlags::CLEAN_PERIODIC.bits();
/// Check if tape-alert-flags indicates media cleaning request
pub fn tape_alert_flags_cleaning_request(flags: TapeAlertFlags) -> bool {
(flags.bits() & MEDIA_CLEAN_MASK) != 0
}

View File

@ -0,0 +1,230 @@
use std::io::Read;
use std::os::unix::io::AsRawFd;
use anyhow::{bail, format_err, Error};
use endian_trait::Endian;
use proxmox::tools::io::ReadExt;
use pbs_api_types::Lp17VolumeStatistics;
use crate::sgutils2::SgRaw;
/// SCSI command to query volume statistics
///
/// CDB: LOG SENSE / LP17h Volume Statistics
///
/// The Volume Statistics log page is included in Ultrium 5 and later
/// drives.
pub fn read_volume_statistics<F: AsRawFd>(file: &mut F) -> Result<Lp17VolumeStatistics, Error> {
let data = sg_read_volume_statistics(file)?;
decode_volume_statistics(&data)
}
fn sg_read_volume_statistics<F: AsRawFd>(file: &mut F) -> Result<Vec<u8>, Error> {
let alloc_len: u16 = 8192;
let mut sg_raw = SgRaw::new(file, alloc_len as usize)?;
let mut cmd = Vec::new();
cmd.push(0x4D); // LOG SENSE
cmd.push(0);
cmd.push((1<<6) | 0x17); // Volume Statistics log page
cmd.push(0); // Subpage 0
cmd.push(0);
cmd.push(0);
cmd.push(0);
cmd.extend(&alloc_len.to_be_bytes()); // alloc len
cmd.push(0u8); // control byte
sg_raw.do_command(&cmd)
.map_err(|err| format_err!("read tape volume statistics failed - {}", err))
.map(|v| v.to_vec())
}
#[repr(C, packed)]
#[derive(Endian)]
struct LpParameterHeader {
parameter_code: u16,
control: u8,
parameter_len: u8,
}
fn decode_volume_statistics(data: &[u8]) -> Result<Lp17VolumeStatistics, Error> {
let read_be_counter = |reader: &mut &[u8], len: u8| {
let len = len as usize;
if len == 0 || len > 8 {
bail!("invalid conter size '{}'", len);
}
let mut buffer = [0u8; 8];
reader.read_exact(&mut buffer[..len])?;
let value = buffer
.iter()
.take(len)
.fold(0, |value, curr| (value << 8) | *curr as u64);
Ok(value)
};
proxmox::try_block!({
if !((data[0] & 0x7f) == 0x17 && data[1] == 0) {
bail!("invalid response");
}
let mut reader = &data[2..];
let page_len: u16 = unsafe { reader.read_be_value()? };
let page_len = page_len as usize;
if (page_len + 4) > data.len() {
bail!("invalid page length");
} else {
// Note: Quantum hh7 returns the allocation_length instead of real data_len
reader = &data[4..page_len+4];
}
let mut stat = Lp17VolumeStatistics::default();
let mut page_valid = false;
loop {
if reader.is_empty() {
break;
}
let head: LpParameterHeader = unsafe { reader.read_be_value()? };
match head.parameter_code {
0x0000 => {
let value: u64 = read_be_counter(&mut reader, head.parameter_len)?;
if value == 0 {
bail!("page-valid flag not set");
}
page_valid = true;
}
0x0001 => {
stat.volume_mounts =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0002 => {
stat.volume_datasets_written =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0003 => {
stat.volume_recovered_write_data_errors =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0004 => {
stat.volume_unrecovered_write_data_errors =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0005 => {
stat.volume_write_servo_errors =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0006 => {
stat.volume_unrecovered_write_servo_errors =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0007 => {
stat.volume_datasets_read =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0008 => {
stat.volume_recovered_read_errors =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0009 => {
stat.volume_unrecovered_read_errors =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x000C => {
stat.last_mount_unrecovered_write_errors =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x000D => {
stat.last_mount_unrecovered_read_errors =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x000E => {
stat.last_mount_bytes_written =
read_be_counter(&mut reader, head.parameter_len)? * 1_000_000;
}
0x000F => {
stat.last_mount_bytes_read =
read_be_counter(&mut reader, head.parameter_len)? * 1_000_000;
}
0x0010 => {
stat.lifetime_bytes_written =
read_be_counter(&mut reader, head.parameter_len)? * 1_000_000;
}
0x0011 => {
stat.lifetime_bytes_read =
read_be_counter(&mut reader, head.parameter_len)? * 1_000_000;
}
0x0012 => {
stat.last_load_write_compression_ratio =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0013 => {
stat.last_load_read_compression_ratio =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0014 => {
stat.medium_mount_time =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0015 => {
stat.medium_ready_time =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0016 => {
stat.total_native_capacity =
read_be_counter(&mut reader, head.parameter_len)? * 1_000_000;
}
0x0017 => {
stat.total_used_native_capacity =
read_be_counter(&mut reader, head.parameter_len)? * 1_000_000;
}
0x0040 => {
let data = reader.read_exact_allocated(head.parameter_len as usize)?;
stat.serial = String::from_utf8_lossy(&data).to_string();
}
0x0080 => {
let value = read_be_counter(&mut reader, head.parameter_len)?;
if value == 1 {
stat.write_protect = true;
}
}
0x0081 => {
let value = read_be_counter(&mut reader, head.parameter_len)?;
if value == 1 {
stat.worm = true;
}
}
0x0101 => {
stat.beginning_of_medium_passes =
read_be_counter(&mut reader, head.parameter_len)?;
}
0x0102 => {
stat.middle_of_tape_passes =
read_be_counter(&mut reader, head.parameter_len)?;
}
_ => {
reader.read_exact_allocated(head.parameter_len as usize)?;
}
}
}
if !page_valid {
bail!("missing page-valid parameter");
}
Ok(stat)
}).map_err(|err| format_err!("decode volume statistics failed - {}", err))
}

799
pbs-tape/src/sgutils2.rs Normal file
View File

@ -0,0 +1,799 @@
//! Bindings for libsgutils2
//!
//! Incomplete, but we currently do not need more.
//!
//! See: `/usr/include/scsi/sg_pt.h`
//!
//! The SCSI Commands Reference Manual also contains some useful information.
use std::os::unix::io::AsRawFd;
use std::ptr::NonNull;
use anyhow::{bail, format_err, Error};
use endian_trait::Endian;
use serde::{Deserialize, Serialize};
use libc::{c_char, c_int};
use std::ffi::CStr;
use proxmox::tools::io::ReadExt;
#[derive(thiserror::Error, Debug)]
pub struct SenseInfo {
pub sense_key: u8,
pub asc: u8,
pub ascq: u8,
}
impl std::fmt::Display for SenseInfo {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let sense_text = SENSE_KEY_DESCRIPTIONS
.get(self.sense_key as usize)
.map(|s| String::from(*s))
.unwrap_or_else(|| format!("Invalid sense {:02X}", self.sense_key));
if self.asc == 0 && self.ascq == 0 {
write!(f, "{}", sense_text)
} else {
let additional_sense_text = get_asc_ascq_string(self.asc, self.ascq);
write!(f, "{}, {}", sense_text, additional_sense_text)
}
}
}
#[derive(thiserror::Error, Debug)]
pub enum ScsiError {
#[error("{0}")]
Error(#[from] Error),
#[error("{0}")]
Sense(#[from] SenseInfo),
}
impl From<std::io::Error> for ScsiError {
fn from(error: std::io::Error) -> Self {
Self::Error(error.into())
}
}
// Opaque wrapper for sg_pt_base
#[repr(C)]
struct SgPtBase { _private: [u8; 0] }
#[repr(transparent)]
struct SgPt {
raw: NonNull<SgPtBase>,
}
impl Drop for SgPt {
fn drop(&mut self) {
unsafe { destruct_scsi_pt_obj(self.as_mut_ptr()) };
}
}
impl SgPt {
fn new() -> Result<Self, Error> {
Ok(Self {
raw: NonNull::new(unsafe { construct_scsi_pt_obj() })
.ok_or_else(|| format_err!("construct_scsi_pt_ob failed"))?,
})
}
fn as_ptr(&self) -> *const SgPtBase {
self.raw.as_ptr()
}
fn as_mut_ptr(&mut self) -> *mut SgPtBase {
self.raw.as_ptr()
}
}
/// Peripheral device type text (see `inquiry` command)
///
/// see [https://en.wikipedia.org/wiki/SCSI_Peripheral_Device_Type]
pub const PERIPHERAL_DEVICE_TYPE_TEXT: [&'static str; 32] = [
"Disk Drive",
"Tape Drive",
"Printer",
"Processor",
"Write-once",
"CD-ROM", // 05h
"Scanner",
"Optical",
"Medium Changer", // 08h
"Communications",
"ASC IT8",
"ASC IT8",
"RAID Array",
"Enclosure Services",
"Simplified direct-access",
"Optical card reader/writer",
"Bridging Expander",
"Object-based Storage",
"Automation/Drive Interface",
"Security manager",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Unknown",
];
// SENSE KEYS
pub const SENSE_KEY_NO_SENSE: u8 = 0x00;
pub const SENSE_KEY_RECOVERED_ERROR: u8 = 0x01;
pub const SENSE_KEY_NOT_READY: u8 = 0x02;
pub const SENSE_KEY_MEDIUM_ERROR: u8 = 0x03;
pub const SENSE_KEY_HARDWARE_ERROR: u8 = 0x04;
pub const SENSE_KEY_ILLEGAL_REQUEST: u8 = 0x05;
pub const SENSE_KEY_UNIT_ATTENTION: u8 = 0x06;
pub const SENSE_KEY_DATA_PROTECT: u8 = 0x07;
pub const SENSE_KEY_BLANK_CHECK: u8 = 0x08;
pub const SENSE_KEY_COPY_ABORTED: u8 = 0x0a;
pub const SENSE_KEY_ABORTED_COMMAND: u8 = 0x0b;
pub const SENSE_KEY_VOLUME_OVERFLOW: u8 = 0x0d;
pub const SENSE_KEY_MISCOMPARE: u8 = 0x0e;
/// Sense Key Descriptions
pub const SENSE_KEY_DESCRIPTIONS: [&'static str; 16] = [
"No Sense",
"Recovered Error",
"Not Ready",
"Medium Error",
"Hardware Error",
"Illegal Request",
"Unit Attention",
"Data Protect",
"Blank Check",
"Vendor specific",
"Copy Aborted",
"Aborted Command",
"Equal",
"Volume Overflow",
"Miscompare",
"Completed",
];
#[repr(C, packed)]
#[derive(Endian)]
// Standard Inquiry page - 36 bytes
struct InquiryPage {
peripheral_type: u8,
rmb: u8,
version: u8,
flags3: u8,
additional_length: u8,
flags5: u8,
flags6: u8,
flags7: u8,
vendor: [u8; 8],
product: [u8; 16],
revision: [u8; 4],
}
#[repr(C, packed)]
#[derive(Endian, Debug)]
pub struct RequestSenseFixed {
pub response_code: u8,
obsolete: u8,
pub flags2: u8,
pub information: [u8;4],
pub additional_sense_len: u8,
pub command_specific_information: [u8;4],
pub additional_sense_code: u8,
pub additional_sense_code_qualifier: u8,
pub field_replacable_unit_code: u8,
pub sense_key_specific: [u8; 3],
}
#[repr(C, packed)]
#[derive(Endian, Debug)]
struct RequestSenseDescriptor{
response_code: u8,
sense_key: u8,
additional_sense_code: u8,
additional_sense_code_qualifier: u8,
reserved: [u8;4],
additional_sense_len: u8,
}
/// Inquiry result
#[derive(Serialize, Deserialize, Debug)]
pub struct InquiryInfo {
/// Peripheral device type (0-31)
pub peripheral_type: u8,
/// Peripheral device type as string
pub peripheral_type_text: String,
/// Vendor
pub vendor: String,
/// Product
pub product: String,
/// Revision
pub revision: String,
}
#[repr(C, packed)]
#[derive(Endian, Debug, Copy, Clone)]
pub struct ModeParameterHeader {
pub mode_data_len: u16,
// Note: medium_type and density_code are not the same. On HP
// drives, medium_type provides very limited information and is
// not compatible with IBM.
pub medium_type: u8,
pub flags3: u8,
reserved4: [u8;2],
pub block_descriptior_len: u16,
}
impl ModeParameterHeader {
pub fn buffer_mode(&self) -> u8 {
(self.flags3 & 0b0111_0000) >> 4
}
pub fn set_buffer_mode(&mut self, buffer_mode: bool) {
let mut mode = self.flags3 & 0b1_000_1111;
if buffer_mode {
mode |= 0b0_001_0000;
}
self.flags3 = mode;
}
pub fn write_protect(&self) -> bool {
(self.flags3 & 0b1000_0000) != 0
}
}
#[repr(C, packed)]
#[derive(Endian, Debug, Copy, Clone)]
/// SCSI ModeBlockDescriptor for Tape devices
pub struct ModeBlockDescriptor {
pub density_code: u8,
pub number_of_blocks: [u8;3],
reserverd: u8,
pub block_length: [u8; 3],
}
impl ModeBlockDescriptor {
pub fn block_length(&self) -> u32 {
((self.block_length[0] as u32) << 16) +
((self.block_length[1] as u32) << 8) +
(self.block_length[2] as u32)
}
pub fn set_block_length(&mut self, length: u32) -> Result<(), Error> {
if length > 0x80_00_00 {
bail!("block length '{}' is too large", length);
}
self.block_length[0] = ((length & 0x00ff0000) >> 16) as u8;
self.block_length[1] = ((length & 0x0000ff00) >> 8) as u8;
self.block_length[2] = (length & 0x000000ff) as u8;
Ok(())
}
}
pub const SCSI_PT_DO_START_OK:c_int = 0;
pub const SCSI_PT_DO_BAD_PARAMS:c_int = 1;
pub const SCSI_PT_DO_TIMEOUT:c_int = 2;
pub const SCSI_PT_RESULT_GOOD:c_int = 0;
pub const SCSI_PT_RESULT_STATUS:c_int = 1;
pub const SCSI_PT_RESULT_SENSE:c_int = 2;
pub const SCSI_PT_RESULT_TRANSPORT_ERR:c_int = 3;
pub const SCSI_PT_RESULT_OS_ERR:c_int = 4;
#[link(name = "sgutils2")]
extern "C" {
#[allow(dead_code)]
fn scsi_pt_open_device(
device_name: * const c_char,
read_only: bool,
verbose: c_int,
) -> c_int;
fn sg_is_scsi_cdb(
cdbp: *const u8,
clen: c_int,
) -> bool;
fn construct_scsi_pt_obj() -> *mut SgPtBase;
fn destruct_scsi_pt_obj(objp: *mut SgPtBase);
fn set_scsi_pt_data_in(
objp: *mut SgPtBase,
dxferp: *mut u8,
dxfer_ilen: c_int,
);
fn set_scsi_pt_data_out(
objp: *mut SgPtBase,
dxferp: *const u8,
dxfer_olen: c_int,
);
fn set_scsi_pt_cdb(
objp: *mut SgPtBase,
cdb: *const u8,
cdb_len: c_int,
);
fn set_scsi_pt_sense(
objp: *mut SgPtBase,
sense: *mut u8,
max_sense_len: c_int,
);
fn do_scsi_pt(
objp: *mut SgPtBase,
fd: c_int,
timeout_secs: c_int,
verbose: c_int,
) -> c_int;
fn get_scsi_pt_resid(objp: *const SgPtBase) -> c_int;
fn get_scsi_pt_sense_len(objp: *const SgPtBase) -> c_int;
fn get_scsi_pt_status_response(objp: *const SgPtBase) -> c_int;
fn get_scsi_pt_result_category(objp: *const SgPtBase) -> c_int;
fn get_scsi_pt_os_err(objp: *const SgPtBase) -> c_int;
fn sg_get_asc_ascq_str(
asc: c_int,
ascq:c_int,
buff_len: c_int,
buffer: *mut c_char,
) -> * const c_char;
}
/// Safe interface to run RAW SCSI commands
pub struct SgRaw<'a, F> {
file: &'a mut F,
buffer: Box<[u8]>,
sense_buffer: [u8; 32],
timeout: i32,
}
/// Get the string associated with ASC/ASCQ values
pub fn get_asc_ascq_string(asc: u8, ascq: u8) -> String {
let mut buffer = [0u8; 1024];
let res = unsafe {
sg_get_asc_ascq_str(
asc as c_int,
ascq as c_int,
buffer.len() as c_int,
buffer.as_mut_ptr() as * mut c_char,
)
};
proxmox::try_block!({
if res.is_null() { // just to be safe
bail!("unexpected NULL ptr");
}
Ok(unsafe { CStr::from_ptr(res) }.to_str()?.to_owned())
}).unwrap_or_else(|_err: Error| {
format!("ASC={:02x}x, ASCQ={:02x}x", asc, ascq)
})
}
/// Allocate a page aligned buffer
///
/// SG RAWIO commands needs page aligned transfer buffers.
pub fn alloc_page_aligned_buffer(buffer_size: usize) -> Result<Box<[u8]> , Error> {
let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) } as usize;
let layout = std::alloc::Layout::from_size_align(buffer_size, page_size)?;
let dinp = unsafe { std::alloc::alloc_zeroed(layout) };
if dinp.is_null() {
bail!("alloc SCSI output buffer failed");
}
let buffer_slice = unsafe { std::slice::from_raw_parts_mut(dinp, buffer_size)};
Ok(unsafe { Box::from_raw(buffer_slice) })
}
impl <'a, F: AsRawFd> SgRaw<'a, F> {
/// Create a new instance to run commands
///
/// The file must be a handle to a SCSI device.
pub fn new(file: &'a mut F, buffer_size: usize) -> Result<Self, Error> {
let buffer;
if buffer_size > 0 {
buffer = alloc_page_aligned_buffer(buffer_size)?;
} else {
buffer = Box::new([]);
}
let sense_buffer = [0u8; 32];
Ok(Self { file, buffer, sense_buffer, timeout: 0 })
}
/// Set the command timeout in seconds (0 means default (60 seconds))
pub fn set_timeout(&mut self, seconds: usize) {
if seconds > (i32::MAX as usize) {
self.timeout = i32::MAX; // don't care about larger values
} else {
self.timeout = seconds as i32;
}
}
// create new object with initialized data_in and sense buffer
fn create_scsi_pt_obj(&mut self) -> Result<SgPt, Error> {
let mut ptvp = SgPt::new()?;
if self.buffer.len() > 0 {
unsafe {
set_scsi_pt_data_in(
ptvp.as_mut_ptr(),
self.buffer.as_mut_ptr(),
self.buffer.len() as c_int,
)
};
}
unsafe {
set_scsi_pt_sense(
ptvp.as_mut_ptr(),
self.sense_buffer.as_mut_ptr(),
self.sense_buffer.len() as c_int,
)
};
Ok(ptvp)
}
fn do_scsi_pt_checked(&mut self, ptvp: &mut SgPt) -> Result<(), ScsiError> {
let res = unsafe { do_scsi_pt(ptvp.as_mut_ptr(), self.file.as_raw_fd(), self.timeout, 0) };
match res {
SCSI_PT_DO_START_OK => { /* Ok */ },
SCSI_PT_DO_BAD_PARAMS => return Err(format_err!("do_scsi_pt failed - bad pass through setup").into()),
SCSI_PT_DO_TIMEOUT => return Err(format_err!("do_scsi_pt failed - timeout").into()),
code if code < 0 => {
let errno = unsafe { get_scsi_pt_os_err(ptvp.as_ptr()) };
let err = nix::Error::from_errno(nix::errno::Errno::from_i32(errno));
return Err(format_err!("do_scsi_pt failed with err {}", err).into());
}
unknown => return Err(format_err!("do_scsi_pt failed: unknown error {}", unknown).into()),
}
if res < 0 {
let err = nix::Error::last();
return Err(format_err!("do_scsi_pt failed - {}", err).into());
}
if res != 0 {
return Err(format_err!("do_scsi_pt failed {}", res).into());
}
let sense_len = unsafe { get_scsi_pt_sense_len(ptvp.as_ptr()) };
let res_cat = unsafe { get_scsi_pt_result_category(ptvp.as_ptr()) };
match res_cat {
SCSI_PT_RESULT_GOOD => return Ok(()),
SCSI_PT_RESULT_STATUS => {
let status = unsafe { get_scsi_pt_status_response(ptvp.as_ptr()) };
if status != 0 {
return Err(format_err!("unknown scsi error - status response {}", status).into());
}
return Ok(());
}
SCSI_PT_RESULT_SENSE => {
if sense_len == 0 {
return Err(format_err!("scsi command failed, but got no sense data").into());
}
let code = self.sense_buffer[0] & 0x7f;
let mut reader = &self.sense_buffer[..(sense_len as usize)];
let sense = match code {
0x70 => {
let sense: RequestSenseFixed = unsafe { reader.read_be_value()? };
SenseInfo {
sense_key: sense.flags2 & 0xf,
asc: sense.additional_sense_code,
ascq: sense.additional_sense_code_qualifier,
}
}
0x72 => {
let sense: RequestSenseDescriptor = unsafe { reader.read_be_value()? };
SenseInfo {
sense_key: sense.sense_key & 0xf,
asc: sense.additional_sense_code,
ascq: sense.additional_sense_code_qualifier,
}
}
0x71 | 0x73 => {
return Err(format_err!("scsi command failed: received deferred Sense").into());
}
unknown => {
return Err(format_err!("scsi command failed: invalid Sense response code {:x}", unknown).into());
}
};
return Err(ScsiError::Sense(sense));
}
SCSI_PT_RESULT_TRANSPORT_ERR => return Err(format_err!("scsi command failed: transport error").into()),
SCSI_PT_RESULT_OS_ERR => {
let errno = unsafe { get_scsi_pt_os_err(ptvp.as_ptr()) };
let err = nix::Error::from_errno(nix::errno::Errno::from_i32(errno));
return Err(format_err!("scsi command failed with err {}", err).into());
}
unknown => return Err(format_err!("scsi command failed: unknown result category {}", unknown).into()),
}
}
/// Run the specified RAW SCSI command
pub fn do_command(&mut self, cmd: &[u8]) -> Result<&[u8], ScsiError> {
if !unsafe { sg_is_scsi_cdb(cmd.as_ptr(), cmd.len() as c_int) } {
return Err(format_err!("no valid SCSI command").into());
}
if self.buffer.len() < 16 {
return Err(format_err!("input buffer too small").into());
}
let mut ptvp = self.create_scsi_pt_obj()?;
unsafe {
set_scsi_pt_cdb(
ptvp.as_mut_ptr(),
cmd.as_ptr(),
cmd.len() as c_int,
)
};
self.do_scsi_pt_checked(&mut ptvp)?;
let resid = unsafe { get_scsi_pt_resid(ptvp.as_ptr()) } as usize;
if resid > self.buffer.len() {
return Err(format_err!("do_scsi_pt failed - got strange resid (value too big)").into());
}
let data_len = self.buffer.len() - resid;
Ok(&self.buffer[..data_len])
}
/// Run the specified RAW SCSI command, use data as input buffer
pub fn do_in_command<'b>(&mut self, cmd: &[u8], data: &'b mut [u8]) -> Result<&'b [u8], ScsiError> {
if !unsafe { sg_is_scsi_cdb(cmd.as_ptr(), cmd.len() as c_int) } {
return Err(format_err!("no valid SCSI command").into());
}
if data.len() == 0 {
return Err(format_err!("got zero-sized input buffer").into());
}
let mut ptvp = self.create_scsi_pt_obj()?;
unsafe {
set_scsi_pt_data_in(
ptvp.as_mut_ptr(),
data.as_mut_ptr(),
data.len() as c_int,
);
set_scsi_pt_cdb(
ptvp.as_mut_ptr(),
cmd.as_ptr(),
cmd.len() as c_int,
);
};
self.do_scsi_pt_checked(&mut ptvp)?;
let resid = unsafe { get_scsi_pt_resid(ptvp.as_ptr()) } as usize;
if resid > data.len() {
return Err(format_err!("do_scsi_pt failed - got strange resid (value too big)").into());
}
let data_len = data.len() - resid;
Ok(&data[..data_len])
}
/// Run dataout command
///
/// Note: use alloc_page_aligned_buffer to alloc data transfer buffer
pub fn do_out_command(&mut self, cmd: &[u8], data: &[u8]) -> Result<(), ScsiError> {
if !unsafe { sg_is_scsi_cdb(cmd.as_ptr(), cmd.len() as c_int) } {
return Err(format_err!("no valid SCSI command").into());
}
let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) } as usize;
if ((data.as_ptr() as usize) & (page_size -1)) != 0 {
return Err(format_err!("wrong transfer buffer alignment").into());
}
let mut ptvp = self.create_scsi_pt_obj()?;
unsafe {
set_scsi_pt_data_out(
ptvp.as_mut_ptr(),
data.as_ptr(),
data.len() as c_int,
);
set_scsi_pt_cdb(
ptvp.as_mut_ptr(),
cmd.as_ptr(),
cmd.len() as c_int,
);
};
self.do_scsi_pt_checked(&mut ptvp)?;
Ok(())
}
}
// Useful helpers
/// Converts SCSI ASCII text into String, trim zero and spaces
pub fn scsi_ascii_to_string(data: &[u8]) -> String {
String::from_utf8_lossy(data)
.trim_matches(char::from(0))
.trim()
.to_string()
}
/// Read SCSI Inquiry page
///
/// Returns Product/Vendor/Revision and device type.
pub fn scsi_inquiry<F: AsRawFd>(
file: &mut F,
) -> Result<InquiryInfo, Error> {
let allocation_len: u8 = std::mem::size_of::<InquiryPage>() as u8;
let mut sg_raw = SgRaw::new(file, allocation_len as usize)?;
sg_raw.set_timeout(30); // use short timeout
let mut cmd = Vec::new();
cmd.extend(&[0x12, 0, 0, 0, allocation_len, 0]); // INQUIRY
let data = sg_raw.do_command(&cmd)
.map_err(|err| format_err!("SCSI inquiry failed - {}", err))?;
proxmox::try_block!({
let mut reader = &data[..];
let page: InquiryPage = unsafe { reader.read_be_value()? };
let peripheral_type = page.peripheral_type & 31;
let info = InquiryInfo {
peripheral_type,
peripheral_type_text: PERIPHERAL_DEVICE_TYPE_TEXT[peripheral_type as usize].to_string(),
vendor: scsi_ascii_to_string(&page.vendor),
product: scsi_ascii_to_string(&page.product),
revision: scsi_ascii_to_string(&page.revision),
};
Ok(info)
}).map_err(|err: Error| format_err!("decode inquiry page failed - {}", err))
}
/// Run SCSI Mode Sense
///
/// Warning: P needs to be repr(C, packed)]
pub fn scsi_mode_sense<F: AsRawFd, P: Endian>(
file: &mut F,
disable_block_descriptor: bool,
page_code: u8,
sub_page_code: u8,
) -> Result<(ModeParameterHeader, Option<ModeBlockDescriptor>, P), Error> {
let allocation_len: u16 = 4096;
let mut sg_raw = SgRaw::new(file, allocation_len as usize)?;
let mut cmd = Vec::new();
cmd.push(0x5A); // MODE SENSE(10)
if disable_block_descriptor {
cmd.push(8); // DBD=1 (Disable Block Descriptors)
} else {
cmd.push(0); // DBD=0 (Include Block Descriptors)
}
cmd.push(page_code & 63); // report current values for page_code
cmd.push(sub_page_code);
cmd.extend(&[0, 0, 0]); // reserved
cmd.extend(&allocation_len.to_be_bytes()); // allocation len
cmd.push(0); //control
let data = sg_raw.do_command(&cmd)
.map_err(|err| format_err!("mode sense failed - {}", err))?;
proxmox::try_block!({
let mut reader = &data[..];
let head: ModeParameterHeader = unsafe { reader.read_be_value()? };
let expected_len = head.mode_data_len as usize + 2;
if data.len() < expected_len {
bail!("wrong mode_data_len: got {}, expected {}", data.len(), expected_len);
} else if data.len() > expected_len {
// Note: Some hh7 drives returns the allocation_length
// instead of real data_len
let header_size = std::mem::size_of::<ModeParameterHeader>();
reader = &data[header_size..expected_len];
}
if disable_block_descriptor && head.block_descriptior_len != 0 {
let len = head.block_descriptior_len;
bail!("wrong block_descriptior_len: {}, expected 0", len);
}
let mut block_descriptor: Option<ModeBlockDescriptor> = None;
if !disable_block_descriptor {
if head.block_descriptior_len != 8 {
let len = head.block_descriptior_len;
bail!("wrong block_descriptior_len: {}, expected 8", len);
}
block_descriptor = Some(unsafe { reader.read_be_value()? });
}
let page: P = unsafe { reader.read_be_value()? };
Ok((head, block_descriptor, page))
}).map_err(|err: Error| format_err!("decode mode sense failed - {}", err))
}
/// Resuqest Sense
pub fn scsi_request_sense<F: AsRawFd>(
file: &mut F,
) -> Result<RequestSenseFixed, ScsiError> {
// request 252 bytes, as mentioned in the Seagate SCSI reference
let allocation_len: u8 = 252;
let mut sg_raw = SgRaw::new(file, allocation_len as usize)?;
sg_raw.set_timeout(30); // use short timeout
let mut cmd = Vec::new();
cmd.extend(&[0x03, 0, 0, 0, allocation_len, 0]); // REQUEST SENSE FIXED FORMAT
let data = sg_raw.do_command(&cmd)
.map_err(|err| format_err!("request sense failed - {}", err))?;
let sense = proxmox::try_block!({
let data_len = data.len();
if data_len < std::mem::size_of::<RequestSenseFixed>() {
bail!("got short data len ({})", data_len);
}
let code = data[0] & 0x7f;
if code != 0x70 {
bail!("received unexpected sense code '0x{:02x}'", code);
}
let mut reader = &data[..];
let sense: RequestSenseFixed = unsafe { reader.read_be_value()? };
Ok(sense)
}).map_err(|err: Error| format_err!("decode request sense failed - {}", err))?;
Ok(sense)
}

38
pbs-tape/src/tape_read.rs Normal file
View File

@ -0,0 +1,38 @@
use std::io::Read;
/// Read trait for tape devices
///
/// Normal Read, but allows to query additional status flags.
pub trait TapeRead: Read {
/// Return true if there is an "INCOMPLETE" mark at EOF
///
/// Raises an error if you query this flag before reaching EOF.
fn is_incomplete(&self) -> Result<bool, std::io::Error>;
/// Return true if there is a file end marker before EOF
///
/// Raises an error if you query this flag before reaching EOF.
fn has_end_marker(&self) -> Result<bool, std::io::Error>;
/// Skip data by reading to EOF (position after EOF marker)
///
// Returns the number of bytes skipped. This does not raise an
// error if the stream has no end marker.
fn skip_data(&mut self) -> Result<usize, std::io::Error>;
}
#[derive(thiserror::Error, Debug)]
pub enum BlockReadError {
#[error("{0}")]
Error(#[from] std::io::Error),
#[error("end of file")]
EndOfFile,
#[error("end of data stream")]
EndOfStream,
}
/// Read streams of blocks
pub trait BlockRead {
/// Read the next block (whole buffer)
fn read_block(&mut self, buffer: &mut [u8]) -> Result<usize, BlockReadError>;
}

View File

@ -0,0 +1,62 @@
use endian_trait::Endian;
use crate::MediaContentHeader;
/// Write trait for tape devices
///
/// The 'write_all' function returns if the drive reached the Logical
/// End Of Media (early warning).
///
/// It is mandatory to call 'finish' before closing the stream to mark it
/// as correctly written.
///
/// Please note that there is no flush method. Tapes flush there internal
/// buffer when they write an EOF marker.
pub trait TapeWrite {
/// writes all data, returns true on LEOM
fn write_all(&mut self, data: &[u8]) -> Result<bool, std::io::Error>;
/// Returns how many bytes (raw data on tape) have been written
fn bytes_written(&self) -> usize;
/// flush last block, write file end mark
///
/// The incomplete flag is used to mark multivolume stream.
fn finish(&mut self, incomplete: bool) -> Result<bool, std::io::Error>;
/// Returns true if the writer already detected the logical end of media
fn logical_end_of_media(&self) -> bool;
/// writes header and data, returns true on LEOM
fn write_header(
&mut self,
header: &MediaContentHeader,
data: &[u8],
) -> Result<bool, std::io::Error> {
if header.size as usize != data.len() {
proxmox::io_bail!("write_header with wrong size - internal error");
}
let header = header.to_le();
let res = self.write_all(unsafe { std::slice::from_raw_parts(
&header as *const MediaContentHeader as *const u8,
std::mem::size_of::<MediaContentHeader>(),
)})?;
if data.is_empty() { return Ok(res); }
self.write_all(data)
}
}
/// Write streams of blocks
pub trait BlockWrite {
/// Write a data block
///
/// Returns true if the drive reached the Logical End Of Media
/// (early warning)
fn write_block(&mut self, buffer: &[u8]) -> Result<bool, std::io::Error>;
/// Write a filemark
fn write_filemark(&mut self) -> Result<(), std::io::Error>;
}