proxmox-backup/src/tools/lru_cache.rs

394 lines
14 KiB
Rust
Raw Normal View History

//! Least recently used (LRU) cache
//!
//! Implements a cache with least recently used cache replacement policy.
//! A HashMap is used for fast access by a given key and a doubly linked list
//! is used to keep track of the cache access order.
use std::collections::{HashMap, hash_map::Entry};
use std::marker::PhantomData;
/// Interface for getting values on cache misses.
pub trait Cacher<K, V> {
/// Fetch a value for key on cache miss.
///
/// Whenever a cache miss occurs, the fetch method provides a corresponding value.
/// If no value can be obtained for the given key, None is returned, the cache is
/// not updated in that case.
fn fetch(&mut self, key: K) -> Result<Option<V>, anyhow::Error>;
}
/// Node of the doubly linked list storing key and value
struct CacheNode<K, V> {
// We need to additionally store the key to be able to remove it
// from the HashMap when removing the tail.
key: K,
value: V,
prev: *mut CacheNode<K, V>,
next: *mut CacheNode<K, V>,
// Dropcheck marker. See the phantom-data section in the rustonomicon.
_marker: PhantomData<Box<CacheNode<K, V>>>,
}
impl<K, V> CacheNode<K, V> {
fn new(key: K, value: V) -> Self {
Self {
key,
value,
prev: std::ptr::null_mut(),
next: std::ptr::null_mut(),
_marker: PhantomData,
}
}
}
/// LRU cache instance.
///
/// # Examples:
/// ```
/// # use self::proxmox_backup::tools::lru_cache::{Cacher, LruCache};
/// # fn main() -> Result<(), anyhow::Error> {
/// struct LruCacher {};
///
/// impl Cacher<u64, u64> for LruCacher {
/// fn fetch(&mut self, key: u64) -> Result<Option<u64>, anyhow::Error> {
/// Ok(Some(key))
/// }
/// }
///
/// let mut cache = LruCache::new(3);
///
/// assert_eq!(cache.get_mut(1), None);
/// assert_eq!(cache.len(), 0);
///
/// cache.insert(1, 1);
/// cache.insert(2, 2);
/// cache.insert(3, 3);
/// cache.insert(4, 4);
/// assert_eq!(cache.len(), 3);
///
/// assert_eq!(cache.get_mut(1), None);
/// assert_eq!(cache.get_mut(2), Some(&mut 2));
/// assert_eq!(cache.get_mut(3), Some(&mut 3));
/// assert_eq!(cache.get_mut(4), Some(&mut 4));
///
/// cache.remove(4);
/// cache.remove(3);
/// cache.remove(2);
/// assert_eq!(cache.len(), 0);
/// assert_eq!(cache.get_mut(2), None);
/// // access will fill in missing cache entry by fetching from LruCacher
/// assert_eq!(cache.access(2, &mut LruCacher {}).unwrap(), Some(&mut 2));
///
/// cache.insert(1, 1);
/// assert_eq!(cache.get_mut(1), Some(&mut 1));
///
/// cache.clear();
/// assert_eq!(cache.len(), 0);
/// assert_eq!(cache.get_mut(1), None);
/// # Ok(())
/// # }
/// ```
pub struct LruCache<K, V> {
/// Quick access to individual nodes via the node pointer.
map: HashMap<K, *mut CacheNode<K, V>>,
/// Actual nodes stored in a linked list.
list: LinkedList<K, V>,
/// Max nodes the cache can hold, temporarily exceeded by 1 due to
/// implementation details.
capacity: usize,
// Dropcheck marker. See the phantom-data section in the rustonomicon.
_marker: PhantomData<Box<CacheNode<K, V>>>,
}
// trivial: if our contents are Send, the whole cache is Send
unsafe impl<K: Send, V: Send> Send for LruCache<K, V> {}
impl<K: std::cmp::Eq + std::hash::Hash + Copy, V> LruCache<K, V> {
/// Create LRU cache instance which holds up to `capacity` nodes at once.
pub fn new(capacity: usize) -> Self {
Self {
map: HashMap::with_capacity(capacity),
list: LinkedList::new(),
capacity,
_marker: PhantomData,
}
}
/// Clear all the entries from the cache.
pub fn clear(&mut self) {
// This frees only the HashMap with the node pointers.
self.map.clear();
// This frees the actual nodes and resets the list head and tail.
self.list.clear();
}
/// Insert or update an entry identified by `key` with the given `value`.
/// This entry is placed as the most recently used node at the head.
pub fn insert(&mut self, key: K, value: V) {
match self.map.entry(key) {
Entry::Occupied(mut o) => {
// Node present, update value
let node_ptr = *o.get_mut();
self.list.bring_to_front(node_ptr);
let mut node = unsafe { Box::from_raw(node_ptr) };
node.value = value;
let _node_ptr = Box::into_raw(node);
}
Entry::Vacant(v) => {
// Node not present, insert a new one
// Unfortunately we need a copy of the key here, therefore it has
// to impl the copy trait
let node = Box::new(CacheNode::new(key, value));
let node_ptr = Box::into_raw(node);
self.list.push_front(node_ptr);
v.insert(node_ptr);
// If we have more elements than capacity,
// delete the lists tail node (= oldest node).
// This needs to be executed after the insert in order to
// avoid borrow conflict. This means there are temporarily
// self.capacity + 1 cache nodes.
if self.map.len() > self.capacity {
self.pop_tail();
}
}
}
}
/// Remove the given `key` and its `value` from the cache.
pub fn remove(&mut self, key: K) -> Option<V> {
// Remove node pointer from the HashMap and get ownership of the node
let node_ptr = self.map.remove(&key)?;
let node = self.list.remove(node_ptr);
Some(node.value)
}
/// Remove the least recently used node from the cache.
fn pop_tail(&mut self) {
if let Some(old_tail) = self.list.pop_tail() {
// Remove HashMap entry for old tail
self.map.remove(&old_tail.key);
}
}
/// Get a mutable reference to the value identified by `key`.
/// This will update the cache entry to be the most recently used entry.
/// On cache misses, None is returned.
pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
let node_ptr = self.map.get(&key)?;
self.list.bring_to_front(*node_ptr);
Some(unsafe { &mut (*self.list.head).value })
}
/// Number of entries in the cache.
pub fn len(&self) -> usize {
self.map.len()
}
/// Returns `true` when the cache is empty
pub fn is_empty(&self) -> bool {
self.map.is_empty()
}
/// Get a mutable reference to the value identified by `key`.
/// This will update the cache entry to be the most recently used entry.
/// On cache misses, the cachers fetch method is called to get a corresponding
/// value.
/// If fetch returns a value, it is inserted as the most recently used entry
/// in the cache.
pub fn access<'a>(&'a mut self, key: K, cacher: &mut dyn Cacher<K, V>) -> Result<Option<&'a mut V>, anyhow::Error> {
match self.map.entry(key) {
Entry::Occupied(mut o) => {
// Cache hit, birng node to front of list
let node_ptr = *o.get_mut();
self.list.bring_to_front(node_ptr);
}
Entry::Vacant(v) => {
// Cache miss, try to fetch from cacher and insert at the front
match cacher.fetch(key)? {
None => return Ok(None),
Some(value) => {
// Unfortunately we need a copy of the key here, therefore it has
// to impl the copy trait
let node = Box::new(CacheNode::new(key, value));
let node_ptr = Box::into_raw(node);
self.list.push_front(node_ptr);
v.insert(node_ptr);
// If we have more elements than capacity,
// delete the lists tail node (= oldest node).
// This needs to be executed after the insert in order to
// avoid borrow conflict. This means there are temporarily
// self.capacity + 1 cache nodes.
if self.map.len() > self.capacity {
self.pop_tail();
}
}
}
}
}
Ok(Some(unsafe { &mut (*self.list.head).value }))
}
}
/// Linked list holding the nodes of the LruCache.
///
/// This struct actually holds the CacheNodes via the raw linked list pointers
/// and allows to define the access sequence of these via the list sequence.
/// The LinkedList of the standard library unfortunately does not implement
/// an efficient way to bring list entries to the front, therefore we need our own.
struct LinkedList<K, V> {
head: *mut CacheNode<K, V>,
tail: *mut CacheNode<K, V>,
}
impl<K, V> LinkedList<K, V> {
/// Create a new empty linked list.
fn new() -> Self {
Self {
head: std::ptr::null_mut(),
tail: std::ptr::null_mut(),
}
}
/// Bring the CacheNode referenced by `node_ptr` to the front of the linked list.
fn bring_to_front(&mut self, node_ptr: *mut CacheNode<K, V>) {
if node_ptr == self.head {
// node is already head, just return
return;
}
let mut node = unsafe { Box::from_raw(node_ptr) };
// Update the prev node to point to next (or null if current node is tail)
unsafe { (*node.prev).next = node.next };
// Update the next node or otherwise the tail
if !node.next.is_null() {
unsafe { (*node.next).prev = node.prev };
} else {
// No next node means this was the tail
self.tail = node.prev;
}
node.prev = std::ptr::null_mut();
node.next = self.head;
// update the head and release ownership of the node again
let node_ptr = Box::into_raw(node);
// Update current head
unsafe { (*self.head).prev = node_ptr };
// Update to new head
self.head = node_ptr;
}
/// Insert a new node at the front of the linked list.
fn push_front(&mut self, node_ptr: *mut CacheNode<K, V>) {
let mut node = unsafe { Box::from_raw(node_ptr) };
// Old head gets new heads next
node.next = self.head;
// Release ownership of node, rest can be handled with just the pointer.
let node_ptr = Box::into_raw(node);
// Update the prev for the old head
if !self.head.is_null() {
unsafe { (*self.head).prev = node_ptr };
}
// Update the head to the new node pointer
self.head = node_ptr;
// If there was no old tail, this node will be the new tail too
if self.tail.is_null() {
self.tail = node_ptr;
}
}
/// Remove the node referenced by `node_ptr` from the linked list and return it.
fn remove(&mut self, node_ptr: *mut CacheNode<K, V>) -> Box<CacheNode<K, V>> {
let node = unsafe { Box::from_raw(node_ptr) };
// Update the previous node or otherwise the head
if !node.prev.is_null() {
unsafe { (*node.prev).next = node.next };
} else {
// No previous node means this was the head
self.head = node.next;
}
// Update the next node or otherwise the tail
if !node.next.is_null() {
unsafe { (*node.next).prev = node.prev };
} else {
// No next node means this was the tail
self.tail = node.prev;
}
node
}
/// Remove the tail node from the linked list and return it.
fn pop_tail(&mut self) -> Option<Box<CacheNode<K, V>>> {
if self.tail.is_null() {
return None;
}
let old_tail = unsafe { Box::from_raw(self.tail) };
self.tail = old_tail.prev;
// Update next node for new tail
if !self.tail.is_null() {
unsafe { (*self.tail).next = std::ptr::null_mut() };
}
Some(old_tail)
}
/// Clear the linked list and free all the nodes.
fn clear(&mut self) {
let mut next = self.head;
while !next.is_null() {
// Taking ownership of node and drop it at the end of the block.
let current = unsafe { Box::from_raw(next) };
next = current.next;
}
// Reset head and tail pointers
self.head = std::ptr::null_mut();
self.tail = std::ptr::null_mut();
}
}
#[test]
fn test_linked_list() {
let mut list = LinkedList::new();
for idx in 0..3 {
let node = Box::new(CacheNode::new(idx, idx + 1));
// Get pointer, release ownership.
let node_ptr = Box::into_raw(node);
list.push_front(node_ptr);
}
assert_eq!(unsafe { (*list.head).key }, 2);
assert_eq!(unsafe { (*list.head).value }, 3);
assert_eq!(unsafe { (*list.tail).key }, 0);
assert_eq!(unsafe { (*list.tail).value }, 1);
list.bring_to_front(list.tail);
assert_eq!(unsafe { (*list.head).key }, 0);
assert_eq!(unsafe { (*list.head).value }, 1);
assert_eq!(unsafe { (*list.tail).key }, 1);
assert_eq!(unsafe { (*list.tail).value }, 2);
list.bring_to_front(list.tail);
assert_eq!(unsafe { (*list.head).key }, 1);
assert_eq!(unsafe { (*list.head).value }, 2);
assert_eq!(unsafe { (*list.tail).key }, 2);
assert_eq!(unsafe { (*list.tail).value }, 3);
let tail = list.pop_tail().unwrap();
assert_eq!(tail.key, 2);
assert_eq!(tail.value, 3);
assert_eq!(unsafe { (*list.head).key }, 1);
assert_eq!(unsafe { (*list.head).value }, 2);
assert_eq!(unsafe { (*list.tail).key }, 0);
assert_eq!(unsafe { (*list.tail).value }, 1);
list.clear();
assert!(list.head.is_null());
assert!(list.tail.is_null());
}