proxmox-backup/src/backup/data_blob.rs

136 lines
4.2 KiB
Rust
Raw Normal View History

use failure::*;
use std::convert::TryInto;
use std::io::Write;
use super::*;
/// Data blob binary storage format
///
/// Data blobs store arbitrary binary data (< 16MB), and can be
/// compressed and encrypted. A simply binary format is used to store
/// them on disk or transfer them over the network. Please use index
/// files to store large data files (".fidx" of ".didx").
///
2019-06-21 15:24:21 +00:00
/// The format start with a 8 byte magic number to identify the type,
/// followed by a 4 byte CRC. This CRC is used on the server side to
/// detect file corruption (computed when upload data), so there is
/// usually no need to compute it on the client side.
///
2019-06-21 15:24:21 +00:00
/// Encrypted blobs contain a 16 byte IV, followed by a 16 byte AD
/// tag, followed by the encrypted data:
///
/// (MAGIC || CRC32 || IV || TAG || EncryptedData).
///
/// Unencrypted blobs simply contain the CRC, followed by the
/// (compressed) data.
///
/// (MAGIC || CRC32 || Data)
///
/// This is basically the same format we use for ``DataChunk``, but
/// with other magic numbers so that we can distinguish them.
pub struct DataBlob {
raw_data: Vec<u8>, // tagged, compressed, encryped data
}
impl DataBlob {
/// accessor to raw_data field
pub fn raw_data(&self) -> &[u8] {
&self.raw_data
}
/// accessor to chunk type (magic number)
pub fn magic(&self) -> &[u8; 8] {
self.raw_data[0..8].try_into().unwrap()
}
2019-06-21 15:24:21 +00:00
/// accessor to crc32 checksum
pub fn crc(&self) -> u32 {
u32::from_le_bytes(self.raw_data[8..12].try_into().unwrap())
}
// set the CRC checksum field
pub fn set_crc(&mut self, crc: u32) {
self.raw_data[8..12].copy_from_slice(&crc.to_le_bytes());
}
/// compute the CRC32 checksum
pub fn compute_crc(&mut self) -> u32 {
let mut hasher = crc32fast::Hasher::new();
hasher.update(&self.raw_data[12..]);
hasher.finalize()
}
pub fn encode(
data: &[u8],
config: Option<&CryptConfig>,
compress: bool,
) -> Result<Self, Error> {
if data.len() > 16*1024*1024 {
bail!("data blob too large ({} bytes).", data.len());
}
if let Some(config) = config {
let enc_data = config.encode_chunk(
data,
compress,
&ENCRYPTED_BLOB_MAGIC_1_0,
&ENCR_COMPR_BLOB_MAGIC_1_0,
)?;
return Ok(DataBlob { raw_data: enc_data });
} else {
if compress {
2019-06-21 15:24:21 +00:00
let mut comp_data = Vec::with_capacity(data.len() + 8 + 4);
comp_data.write_all(&COMPRESSED_BLOB_MAGIC_1_0)?;
2019-06-21 15:24:21 +00:00
comp_data.write_all(&[0u8, 4])?; // CRC set to 0
zstd::stream::copy_encode(data, &mut comp_data, 1)?;
2019-06-21 15:24:21 +00:00
if comp_data.len() < (data.len() + 8 + 4) {
return Ok(DataBlob { raw_data: comp_data });
}
}
2019-06-21 15:24:21 +00:00
let mut raw_data = Vec::with_capacity(data.len() + 8 + 4);
raw_data.write_all(&UNCOMPRESSED_BLOB_MAGIC_1_0)?;
2019-06-21 15:24:21 +00:00
raw_data.write_all(&[0u8; 4])?;
raw_data.extend_from_slice(data);
return Ok(DataBlob { raw_data });
}
}
/// Decode blob data
pub fn decode(self, config: Option<&CryptConfig>) -> Result<Vec<u8>, Error> {
let magic = self.magic();
if magic == &UNCOMPRESSED_BLOB_MAGIC_1_0 {
2019-06-21 15:24:21 +00:00
return Ok(self.raw_data[12..].to_vec());
} else if magic == &COMPRESSED_BLOB_MAGIC_1_0 {
2019-06-21 15:24:21 +00:00
let data = zstd::block::decompress(&self.raw_data[12..], 16*1024*1024)?;
return Ok(data);
} else if magic == &ENCR_COMPR_BLOB_MAGIC_1_0 || magic == &ENCRYPTED_BLOB_MAGIC_1_0 {
if let Some(config) = config {
let data = if magic == &ENCR_COMPR_BLOB_MAGIC_1_0 {
config.decode_compressed_chunk(&self.raw_data)?
} else {
config.decode_uncompressed_chunk(&self.raw_data)?
};
return Ok(data);
} else {
bail!("unable to decrypt blob - missing CryptConfig");
}
} else {
bail!("Invalid blob magic number.");
}
}
}