proxmox-backup/pbs-tools/src/async_lru_cache.rs

137 lines
4.7 KiB
Rust
Raw Normal View History

//! An 'async'-safe layer on the existing sync LruCache implementation. Supports multiple
//! concurrent requests to the same key.
use anyhow::Error;
use std::collections::HashMap;
use std::future::Future;
use std::sync::{Arc, Mutex};
use proxmox_async::broadcast_future::BroadcastFuture;
use crate::lru_cache::LruCache;
/// Interface for asynchronously getting values on cache misses.
pub trait AsyncCacher<K, V: Clone>: Sync + Send {
/// Fetch a value for key on cache miss.
///
/// Works similar to non-async lru_cache::Cacher, but if the key has already been requested
/// and the result is not cached yet, the 'fetch' function will not be called and instead the
/// result of the original request cloned and returned upon completion.
///
/// The underlying LRU structure is not modified until the returned future resolves to an
/// Ok(Some(_)) value.
fn fetch(&self, key: K) -> Box<dyn Future<Output = Result<Option<V>, Error>> + Send>;
}
/// See tools::lru_cache::LruCache, this implements an async-safe variant of that with the help of
/// AsyncCacher.
#[derive(Clone)]
pub struct AsyncLruCache<K, V> {
maps: Arc<Mutex<(LruCache<K, V>, HashMap<K, BroadcastFuture<Option<V>>>)>>,
}
impl<K: std::cmp::Eq + std::hash::Hash + Copy, V: Clone + Send + 'static> AsyncLruCache<K, V> {
/// Create a new AsyncLruCache with the given maximum capacity.
pub fn new(capacity: usize) -> Self {
Self {
maps: Arc::new(Mutex::new((LruCache::new(capacity), HashMap::new()))),
}
}
/// Access an item either via the cache or by calling cacher.fetch. A return value of Ok(None)
/// means the item requested has no representation, Err(_) means a call to fetch() failed,
/// regardless of whether it was initiated by this call or a previous one.
pub async fn access(&self, key: K, cacher: &dyn AsyncCacher<K, V>) -> Result<Option<V>, Error> {
let (owner, result_fut) = {
// check if already requested
let mut maps = self.maps.lock().unwrap();
if let Some(fut) = maps.1.get(&key) {
// wait for the already scheduled future to resolve
(false, fut.listen())
} else {
// check if value is cached in LRU
if let Some(val) = maps.0.get_mut(key) {
return Ok(Some(val.clone()));
}
// if neither, start broadcast future and put into map while we still have lock
let fut = cacher.fetch(key);
let broadcast = BroadcastFuture::new(fut);
let result_fut = broadcast.listen();
maps.1.insert(key, broadcast);
(true, result_fut)
}
// drop Mutex before awaiting any future
};
let result = result_fut.await;
if owner {
// this call was the one initiating the request, put into LRU and remove from map
let mut maps = self.maps.lock().unwrap();
if let Ok(Some(ref value)) = result {
maps.0.insert(key, value.clone());
}
maps.1.remove(&key);
}
result
}
}
mod test {
use super::*;
struct TestAsyncCacher {
prefix: &'static str,
}
impl AsyncCacher<i32, String> for TestAsyncCacher {
fn fetch(
&self,
key: i32,
) -> Box<dyn Future<Output = Result<Option<String>, Error>> + Send> {
let x = self.prefix;
Box::new(async move { Ok(Some(format!("{}{}", x, key))) })
}
}
#[test]
fn test_async_lru_cache() {
let rt = tokio::runtime::Runtime::new().unwrap();
rt.block_on(async move {
let cacher = TestAsyncCacher { prefix: "x" };
let cache: AsyncLruCache<i32, String> = AsyncLruCache::new(2);
assert_eq!(
cache.access(10, &cacher).await.unwrap(),
Some("x10".to_string())
);
assert_eq!(
cache.access(20, &cacher).await.unwrap(),
Some("x20".to_string())
);
assert_eq!(
cache.access(30, &cacher).await.unwrap(),
Some("x30".to_string())
);
for _ in 0..10 {
let c = cache.clone();
tokio::spawn(async move {
let cacher = TestAsyncCacher { prefix: "y" };
assert_eq!(
c.access(40, &cacher).await.unwrap(),
Some("y40".to_string())
);
});
}
assert_eq!(
cache.access(20, &cacher).await.unwrap(),
Some("x20".to_string())
);
});
}
}